Menu Close

Category: Algebra

If-f-R-R-is-a-function-such-that-f-0-1-and-f-x-f-y-f-x-y-for-all-x-y-R-then-A-1-is-a-period-of-f-B-f-n-1-for-all-integers-n-C-f-n-n-for-all-integers-n-D-f-1-0-

Question Number 119801 by Ar Brandon last updated on 27/Oct/20 $$\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}\left(\mathrm{x}+{f}\left(\mathrm{y}\right)\right)= \\ $$$${f}\left(\mathrm{x}\right)+\mathrm{y}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\:\mathrm{y}\in\mathbb{R},\:\mathrm{then} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f} \\ $$$$\left(\mathrm{B}\right)\:{f}\left({n}\right)=\mathrm{1}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{C}\right)\:{f}\left({n}\right)={n}\:\mathrm{for}\:\mathrm{all}\:\mathrm{integers}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{f}\left(−\mathrm{1}\right)=\mathrm{0} \\ $$ Terms of…

Examples-of-functions-such-that-f-x-y-f-x-f-y-for-all-x-y-R-

Question Number 119800 by Ar Brandon last updated on 27/Oct/20 $$\mathrm{Examples}\:\mathrm{of}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left(\mathrm{x}+\mathrm{y}\right)={f}\left(\mathrm{x}\right)+{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\in\mathbb{R} \\ $$ Commented by mr W last updated on 27/Oct/20 $${f}\left({x}\right)={ax} \\…

Q1-Let-M-2-be-the-set-of-square-matrices-of-order-2-over-the-real-number-system-and-R-A-B-M-2-M-2-A-P-T-BP-for-some-non-singular-P-M-Then-R-is-A-symmetric-B-transit

Question Number 119797 by Ar Brandon last updated on 27/Oct/20 $$\mathrm{Q1} \\ $$$$\mathrm{Let}\:{M}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{square}\:\mathrm{matrices}\:\mathrm{of}\:\mathrm{order}\:\mathrm{2}\:\mathrm{over} \\ $$$$\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{system}\:\mathrm{and} \\ $$$$\:\:\:\:\:\mathcal{R}=\left\{\left({A},{B}\right)\in{M}_{\mathrm{2}} ×{M}_{\mathrm{2}} \mid{A}={P}^{\:\mathrm{T}} {BP}\:\:\mathrm{for}\:\mathrm{some}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{non}-\mathrm{singular}\:{P}\:\in{M}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is}…

Solve-in-real-numbers-the-system-of-equations-3x-y-x-3y-xy-14-x-y-x-2-14xy-y-2-36-

Question Number 119795 by bobhans last updated on 27/Oct/20 $${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{system}\:{of} \\ $$$${equations}\:\begin{cases}{\left(\mathrm{3}{x}+{y}\right)\left({x}+\mathrm{3}{y}\right)\sqrt{{xy}}\:=\mathrm{14}}\\{\left({x}+{y}\right)\left({x}^{\mathrm{2}} +\mathrm{14}{xy}+{y}^{\mathrm{2}} \right)=\:\mathrm{36}}\end{cases}\: \\ $$ Answered by 1549442205PVT last updated on 27/Oct/20 $$\mathrm{Put}\:\mathrm{x}=\mathrm{ky}\:\mathrm{we}\:\mathrm{get} \\…

Solve-the-equation-x-x-2-3x-20-

Question Number 185315 by Shrinava last updated on 20/Jan/23 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{x}!\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{20} \\ $$ Answered by Rasheed.Sindhi last updated on 20/Jan/23 $${f}\left({x}\right)=\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{20}−{x}! \\…

Question-119774

Question Number 119774 by rajesh4661kumar@gmail.com last updated on 26/Oct/20 Answered by $@y@m last updated on 27/Oct/20 $$\left(\mathrm{40}+\mathrm{50}−\mathrm{2}\right)×\mathrm{2}×\mathrm{100}={Rs}.\mathrm{17600} \\ $$ Commented by rajesh4661kumar@gmail.com last updated on…

For-any-integer-n-let-I-n-be-the-interval-n-n-1-Define-R-x-y-R-both-x-y-I-n-for-some-n-Z-Then-R-is-A-reflexive-on-R-B-symmetric-C-transitive-D-an-equivalence-relation-

Question Number 119757 by Ar Brandon last updated on 26/Oct/20 $$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive}…