Menu Close

Category: Algebra

Question-184875

Question Number 184875 by universe last updated on 13/Jan/23 Answered by Mathspace last updated on 13/Jan/23 $${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {t}^{{n}} \:{for}\:\mid{t}\mid<\mathrm{1} \\ $$$${we}\:{have}\:{f}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{1}+{t}} \\ $$$${but}\:{f}^{'}…

x-0-5-0-5-find-the-product-of-all-x-s-3-cos-2-pix-sinpiy-2-9-3-sinpix-sinpiy-sinpiy-

Question Number 184861 by Shrinava last updated on 12/Jan/23 $$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:\:;\:\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{3}\left(\mathrm{cos}^{\mathrm{2}} \pi\mathrm{x}\:+\:\mathrm{sin}\pi\mathrm{y}\right)\:+\:\mathrm{2}\:=\:\mathrm{9}\:+\:\mathrm{3}\:\mid\mathrm{sin}\pi\mathrm{x}\:\centerdot\:\mathrm{sin}\pi\mathrm{y}\mid−\mathrm{sin}\pi\mathrm{y} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

f-x-x-x-ax-a-3-4-find-D-f-domain-R-f-range-

Question Number 184856 by mnjuly1970 last updated on 12/Jan/23 $$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\sqrt{\:\mid\:\underset{} {\overset{} {{x}}}\:\:\mid\:−\mid\:\:{x}\underset{} {\overset{} {−}}\lfloor{ax}\rfloor\:\mid} \\ $$$$\:\:\:\:\:\:;\:\:\:{a}\:\in\:\left[\:\mathrm{3}\:,\:\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:{find}\::\:\:\:\begin{cases}{\:\:{D}_{\:{f}} \:=?\:\left({domain}\:\right)}\\{\:\:\mathcal{R}_{\:{f}} \:=?\:\left({range}\:\right)}\end{cases} \\ $$$$ \\…

x-0-5-0-5-find-the-product-of-all-x-s-1-4sin-2-pix-4sinpix-2-2sin-2-piy-1-2-4sinpix-4sinpiy-7-1-sin-2-pix-

Question Number 184845 by Shrinava last updated on 12/Jan/23 $$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:;\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{1}.\:\mathrm{4sin}^{\mathrm{2}} \pi\mathrm{x}−\mathrm{4sin}\pi\mathrm{x}\:+\:\mathrm{2}\:=\:\mathrm{2sin}^{\mathrm{2}} \pi\mathrm{y}−\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{4sin}\pi\mathrm{x}\:=\:\mathrm{4sin}\pi\mathrm{y}\:−\:\mathrm{7}\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \pi\mathrm{x}} \\ $$ Terms of Service Privacy…

Question-184841

Question Number 184841 by Shrinava last updated on 12/Jan/23 Answered by manolex last updated on 12/Jan/23 $${y}=\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}\:\:\::\:\:{y}=\mathrm{0}.\mathrm{18}:\:\:\:\:\:\mathrm{0}<{y}<\mathrm{1} \\ $$$${y}^{\mathrm{2}} =\mathrm{15}−\mathrm{4}\sqrt{\mathrm{14}} \\ $$$$\frac{\mathrm{1}}{{y}}=\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{7}} \\ $$$${tenemos} \\…

let-A-2-1-1-1-1-determine-P-inversible-and-D-diagoanal-in-ordre-to-have-A-PDP-1-1-calculate-A-n-with-n-integr-nstural-2-calculate-e-t-A-with-t-R-3

Question Number 53775 by maxmathsup by imad last updated on 25/Jan/19 $${let}\:\:{A}\:=\:\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:\:{P}\:{inversible}\:{and}\:{D}\:{diagoanal}\:{in}\:{ordre}\:{to}\:{have} \\ $$$${A}\:={PDP}^{−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \:\:{with}\:{n}\:{integr}\:{nstural} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{e}^{{t}\:{A}} \:\:\:{with}\:{t}\:\in\:{R}\:\: \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{e}^{−{A}} \:\:.…

Solve-the-equation-he-2-she-where-h-e-and-s-are-integers-

Question Number 53770 by Tawa1 last updated on 25/Jan/19 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{he}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{she}\:\:,\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\mathrm{h},\:\mathrm{e}\:\:\mathrm{and}\:\:\mathrm{s}\:\:\mathrm{are}\:\mathrm{integers}\:. \\ $$ Answered by mr W last updated on 26/Jan/19 $${let}\:{he}={t} \\…

let-x-y-z-be-positive-real-numbers-such-that-x-y-z-1-Determine-the-minimum-value-of-1-x-4-y-9-z-

Question Number 119303 by bobhans last updated on 23/Oct/20 $$\:{let}\:{x},{y},{z}\:{be}\:{positive}\:{real}\:{numbers}\: \\ $$$${such}\:{that}\:{x}+{y}+{z}=\mathrm{1}.\:{Determine}\: \\ $$$${the}\:{minimum}\:{value}\:{of}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}. \\ $$ Answered by TANMAY PANACEA last updated on 23/Oct/20 $$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{4}}{{y}}+\frac{\mathrm{9}}{{z}}…