Menu Close

Category: Algebra

Show-by-recurence-that-a-b-n-k-0-n-C-n-k-a-k-b-n-k-

Question Number 118790 by mathocean1 last updated on 19/Oct/20 $$\mathrm{Show}\:\mathrm{by}\:\mathrm{recurence}\:\mathrm{that} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}\:} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} ×\mathrm{a}^{\mathrm{k}} ×\mathrm{b}^{\mathrm{n}−\mathrm{k}} \\ $$ Terms of Service Privacy Policy…

z-and-z-C-show-that-1-zz-z-z-2-z-z-z-z-

Question Number 118780 by mathocean1 last updated on 19/Oct/20 $$\mathrm{z}\:\mathrm{and}\:\mathrm{z}'\:\in\:\mathbb{C}\:. \\ $$$$\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{1}.\:\:\:\:\:\:\overline {\mathrm{zz}'}=\overset{−} {\mathrm{z}}×\overline {\mathrm{z}'} \\ $$$$\mathrm{2}.\:\:\:\:\:\:\:\overline {\left(\frac{\mathrm{z}}{\mathrm{z}'}\right)}=\frac{\overset{−} {\mathrm{z}}}{\overline {\mathrm{z}'}} \\ $$$$ \\…

2-2-2-2-2-X-2-2-2-2-2-5-10-5-2-V-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-5-Variance-0-

Question Number 118775 by obaidullah last updated on 19/Oct/20 $$\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2} \\ $$$${X}=\frac{\mathrm{2}+\mathrm{2}+\mathrm{2}+\mathrm{2}+\mathrm{2}}{\mathrm{5}}=\frac{\mathrm{10}}{\mathrm{5}}=\mathrm{2} \\ $$$${V}=\frac{\left(\mathrm{2}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{5}} \\ $$$${Variance}=\mathrm{0} \\ $$ Terms of…

lim-n-n-n-n-1-n-lim-n-2npi-n-n-n-n-e-n-1-n-lim-n-1-e-2npi-1-n-1-e-

Question Number 118777 by obaidullah last updated on 19/Oct/20 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}{n}\pi}\:{n}^{{n}} }{{n}^{{n}} ×{e}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{e}}\left(\sqrt{\mathrm{2}{n}\pi}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{e}} \\ $$ Answered by…

Question-184304

Question Number 184304 by mathlove last updated on 05/Jan/23 Answered by Frix last updated on 05/Jan/23 $${a}=\frac{\mathrm{1}+\sqrt{\mathrm{4}{t}+\mathrm{221}}}{\mathrm{2}} \\ $$$${a}+\frac{\mathrm{2}}{{a}}=\mathrm{1}\:\Leftrightarrow\:{a}^{\mathrm{2}} −{a}+\mathrm{2}=\mathrm{0}\:\Leftrightarrow\:{t}=−\mathrm{57} \\ $$$${P}={t}^{\mathrm{2}} −\mathrm{1226}=\mathrm{2023} \\ $$…

lim-x-n-n-n-1-n-y-n-n-n-1-n-1-n-ln-n-n-n-1-n-lnn-nlnn-lim-x-lny-lim-x-1-n-nlnn-n-nlnn-lnlim-x-y-lim-x-lnn-1-lnn-lim-x-n-n-n-

Question Number 118770 by obaidullah last updated on 19/Oct/20 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$${y}=\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{n}}{ln}\left(\frac{{n}!}{{n}^{{n}} }\right)=\frac{\mathrm{1}}{{n}}\left[{lnn}!−{nlnn}\right] \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}{lny}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\left[{nlnn}−{n}−{nlnn}\right] \\ $$$$\Rightarrow{ln}\underset{{x}\rightarrow\infty} {\mathrm{lim}}{y}=\underset{{x}\rightarrow\infty}…