Menu Close

Category: Algebra

For-a-b-c-d-R-a-b-c-d-0-ab-ac-ad-bc-bd-cd-0-Prove-the-inequality-ab-a-b-2-ac-a-c-2-ad-a-d-2-bc-b-c-2-bd-b-d-2-cd-c-d-2-3-2-When-is-

Question Number 182043 by depressiveshrek last updated on 03/Dec/22 $${For}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{0} \\ $$$${ab},\:{ac},\:{ad},\:{bc},\:{bd},\:{cd}\:\neq\mathrm{0} \\ $$$${Prove}\:{the}\:{inequality}: \\ $$$$\frac{{ab}}{\left({a}+{b}\right)^{\mathrm{2}} }+\frac{{ac}}{\left({a}+{c}\right)^{\mathrm{2}} }+\frac{{ad}}{\left({a}+{d}\right)^{\mathrm{2}} }+\frac{{bc}}{\left({b}+{c}\right)^{\mathrm{2}} }+\frac{{bd}}{\left({b}+{d}\right)^{\mathrm{2}} }+\frac{{cd}}{\left({c}+{d}\right)^{\mathrm{2}} }\leq−\frac{\mathrm{3}}{\mathrm{2}} \\…

Question-50932

Question Number 50932 by Tawa1 last updated on 22/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 22/Dec/18 $${log}_{\left({log}_{{a}} {c}\right)^{\mathrm{2}} } {log}_{{b}} {a}=\frac{−\mathrm{3}}{\mathrm{2}} \\ $$$$\left[\left({log}_{{a}} {c}\right)^{\mathrm{2}} \right]^{\frac{−\mathrm{3}}{\mathrm{2}}}…

if-a-2b-3c-4d-5e-6f-0-find-the-maximum-of-a-b-c-d-e-f-a-2-b-2-c-2-d-2-e-2-f-2-

Question Number 182000 by mr W last updated on 03/Dec/22 $${if}\:\boldsymbol{{a}}−\mathrm{2}\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{c}}−\mathrm{4}\boldsymbol{{d}}+\mathrm{5}\boldsymbol{{e}}−\mathrm{6}\boldsymbol{{f}}=\mathrm{0},\:{find} \\ $$$${the}\:{maximum}\:{of} \\ $$$$\frac{\mid\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{e}}+\boldsymbol{{f}}\mid}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} +\boldsymbol{{e}}^{\mathrm{2}} +\boldsymbol{{f}}^{\mathrm{2}} }}. \\ $$ Commented by…

Question-181998

Question Number 181998 by Tolmasbek last updated on 03/Dec/22 Answered by a.lgnaoui last updated on 03/Dec/22 $$\alpha=\mathrm{3}\left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right) \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)\left[\mathrm{3}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)\right]}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{18}}+\frac{\pi{n}}{\mathrm{9}}\right)} \\ $$$$=\frac{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\left[\mathrm{3}−\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\right]\right.\right.}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)\right.}…

factor-x-3-x-2-x-1-3-and-x-3-x-2-x-1-3-and-x-3-x-2-x-1-3-

Question Number 50925 by kaivan.ahmadi last updated on 22/Dec/18 $$\mathrm{factor}\:\:\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\mathrm{and} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{and} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$ Commented by Abdo…

Question-116452

Question Number 116452 by zakirullah last updated on 04/Oct/20 Answered by bobhans last updated on 04/Oct/20 $$\Rightarrow\mathrm{the}\:\mathrm{number}\:\begin{cases}{\mathrm{x}}\\{\mathrm{9x}}\end{cases}\:\Leftrightarrow\:\mathrm{9x}^{\mathrm{2}} =\mathrm{15},\mathrm{876} \\ $$$$\mathrm{x}\:=\:\sqrt{\frac{\mathrm{15},\mathrm{876}}{\mathrm{9}}}\:=\:\frac{\mathrm{126}}{\mathrm{3}}\:=\:\mathrm{42} \\ $$ Answered by nimnim…

Given-f-x-k-0-n-n-C-k-sin-kx-cos-n-k-x-Find-a-simple-form-for-f-x-Your-answer-should-be-written-like-c-n-g-nx-

Question Number 50908 by Smail last updated on 22/Dec/18 $${Given}\:{f}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{k}} {sin}\left({kx}\right){cos}\left(\left({n}−{k}\right){x}\right) \\ $$$${Find}\:{a}\:{simple}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left({Your}\:{answer}\:{should}\:{be}\:{written}\:{like}\:{c}\left({n}\right).{g}\left({nx}\right)\right)\: \\ $$ Answered by Smail last updated…