Question Number 116301 by harckinwunmy last updated on 02/Oct/20 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{given}\:\mathrm{line}\:\mathrm{to}\:\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{not}\:\mathrm{to}\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve}\: \\ $$ Answered by Rio Michael last…
Question Number 181832 by henderson last updated on 01/Dec/22 $$\mathrm{help}\:! \\ $$$$\int\:\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:=\:??? \\ $$ Commented by CElcedricjunior last updated on 01/Dec/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{ln}}\left(\boldsymbol{{x}}+\mathrm{1}\right)}{\boldsymbol{{x}}^{\mathrm{2}}…
Question Number 50754 by peter frank last updated on 19/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/Dec/18 $${R}\left({asec}\theta,{btan}\theta\right)\:\:{centre}\left(\mathrm{0},\mathrm{0}\right)\:{S}\left({c},\mathrm{0}\right)\:{S}^{'}…
Question Number 50747 by behi83417@gmail.com last updated on 19/Dec/18 $$\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{a}},{a}\neq\mathrm{0} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{b}},{b}\neq\mathrm{0} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{c}},{c}\neq\mathrm{0} \\ $$$${solve}\:{for}\::{x},{y},{z}.\:\: \\ $$ Commented…
Question Number 50744 by Necxx last updated on 19/Dec/18 $${If}\:{the}\:{perimeter}\:{of}\:{a}\:{rectangle}\:{is} \\ $$$${a}\:\mathrm{2}−{digit}\:{number}\:{which}\:{unit}\:{digit}\mathscr{L} \\ $$$${and}\:{tens}\:{digit}\:{represents}\:{its}\:{length} \\ $$$${and}\:{breadth}\:{respectively}.{Find}\:{its} \\ $$$${area}\:{in}\:{constant}. \\ $$ Answered by Rasheed.Sindhi last updated…
Question Number 50730 by ajfour last updated on 19/Dec/18 $$\sqrt{{x}−{a}}+\sqrt{{x}−{b}}+\sqrt{{x}−{c}}+{x}\:=\:{d} \\ $$$${solve}\:{for}\:{x}. \\ $$ Answered by behi83417@gmail.com last updated on 21/Dec/18 $${after}\:{squaring}\:{and}\:{symplifing}\:{i}\:{got} \\ $$$${this}\:{equtition}: \\…
Question Number 116259 by Khalmohmmad last updated on 02/Oct/20 Answered by TANMAY PANACEA last updated on 02/Oct/20 $${a}+{a}+\mathrm{4}{d}=\mathrm{30}\:\:{considering}\:{A}.{P}\:{series} \\ $$$${a}+\mathrm{2}{d}+{a}+\mathrm{6}{d}=\mathrm{120} \\ $$$$\mathrm{8}{d}+\mathrm{30}−\mathrm{4}{d}=\mathrm{120} \\ $$$${d}=\frac{\mathrm{90}}{\mathrm{4}}=\frac{\mathrm{45}}{\mathrm{2}} \\…
Question Number 181794 by Shrinava last updated on 30/Nov/22 $$\mathrm{f}\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)\:=\:\mathrm{e}^{\mathrm{3}} \\ $$$$\mathrm{f}\:\in\:\mathbb{C}^{\mathrm{2}} \:\left(\mathbb{R}\right) \\ $$$$\mathrm{f}\:^{''} \:\left(\mathrm{x}\right)\:−\:\mathrm{5}\:\mathrm{f}\:^{'} \left(\mathrm{x}\right)\:+\:\mathrm{6}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{0}\:\:,\:\:\forall\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{f}\:\left(\mathrm{x}\right)}\right)^{\boldsymbol{\mathrm{x}}} \\ $$ Answered…
Question Number 50717 by Tawa1 last updated on 19/Dec/18 Answered by tanmay.chaudhury50@gmail.com last updated on 19/Dec/18 $${x}+\sqrt{{y}}\:−\sqrt{{x}}\:−{y}=\mathrm{4} \\ $$$$\left(\sqrt{{x}}+\sqrt{{y}}\:\right)\left(\sqrt{{x}}\:−\sqrt{{y}}\:\right)−\left(\sqrt{{x}}\:−\sqrt{{y}}\:\right)=\mathrm{4} \\ $$$$\left(\sqrt{{x}}\:−\sqrt{{y}}\:\right)\left(\sqrt{{x}}\:+\sqrt{{y}}\:−\mathrm{1}\right)=\mathrm{4} \\ $$$$\:{by}\:{logic}\:{trial}\:{x}=\mathrm{9}\:\:{y}=\:\mathrm{4}\:\:{so}\:\:\:{z}=\mathrm{1} \\ $$$$…
Question Number 116253 by I want to learn more last updated on 02/Oct/20 $$\left(\mathrm{1}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right)\:\:\:=\:\:\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right).\:\mathrm{x}_{\mathrm{i}} ^{\mathrm{k}} \:\:\:=\:\:\:\mathrm{x}^{\mathrm{k}} ,\:\:\:\:\:\:\:\:\mathrm{k}\:\leqslant\:\mathrm{n}…