Question Number 50372 by prof Abdo imad last updated on 16/Dec/18 $${prove}\:{that}\:\mathrm{2}^{{n}+\mathrm{1}} \:{divide}\left[\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right]\:{for}\:{all}\:{n} \\ $$$${integr}\:{natural}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 181440 by universe last updated on 25/Nov/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 50371 by prof Abdo imad last updated on 16/Dec/18 $${let}\:{F}_{{n}} =\mathrm{2}^{\mathrm{2}^{{n}} } \:+\mathrm{1}\:\:\:\:\left({fermat}\:{numbers}\right) \\ $$$${prove}\:{that}\:\Delta\left({F}_{{m}} ,{F}_{{n}} \right)=\mathrm{1}\:{for}\:{m}\neq{n} \\ $$ Terms of Service Privacy…
Question Number 50369 by prof Abdo imad last updated on 16/Dec/18 $${find}\:{x}\:,{y}\:{from}\:{Z}\:\:{wich}\:{verify} \\ $$$${y}^{\mathrm{2}} ={x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right) \\ $$ Answered by mr W last updated on 16/Dec/18…
Question Number 50370 by prof Abdo imad last updated on 16/Dec/18 $${prove}\:{that}\:\forall\:\left({x},{y}\right)\in{Z}^{\mathrm{2}} \\ $$$${x}^{\mathrm{19}} {y}−{xy}^{\mathrm{19}} \:{is}\:{divided}\:{by}\:\mathrm{798}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 50368 by prof Abdo imad last updated on 16/Dec/18 $${find}\:{all}\:\left({x},{y}\right)\in{Q}^{+\bigstar^{\mathrm{2}} } \:\:{and}\:\:{x}^{{y}} ={y}^{{x}} \:\:{and}\:{x}<{y} \\ $$ Commented by mr W last updated on…
Question Number 50367 by prof Abdo imad last updated on 16/Dec/18 $${calculate}\:\sum_{{k}={p}} ^{\mathrm{2}{p}} \:\:\frac{{C}_{{k}} ^{{p}} }{\mathrm{2}^{{k}} } \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 50366 by prof Abdo imad last updated on 16/Dec/18 $${let}\:\:{A}\:=\begin{pmatrix}{\mathrm{0}\:\:\:\:\:{m}\:\:\:\:\:\:{m}^{\mathrm{2}} }\\{\frac{\mathrm{1}}{{m}}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:{m}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\:\:\:\:\frac{\mathrm{1}}{{m}}\:\:\:\:\:\:\mathrm{0}\:\:\:\right) \\ $$$${A}\:\in\:{M}_{\mathrm{3}} \left({R}\right)\:\:{and}\:{m}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{relation}\:{betwen}\:{I}_{\mathrm{3}} ,\:{A}\:{and}\:{A}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{is}\:{A}\:{inversible}\:\:\:.{determine}\:{A}^{−\mathrm{1}} \:{in}\:{case}\:{of}\:{exist}…
Question Number 181438 by Agnibhoo98 last updated on 26/Nov/22 $$\mathrm{If}\:{a}\:+\:\frac{\mathrm{1}}{{b}}\:=\:{b}\:+\:\frac{\mathrm{1}}{{c}}\:=\:{c}\:+\:\frac{\mathrm{1}}{{a}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${abc}\:=\:\pm\mathrm{1}.\:\:\:{a}\:\neq\:{b}\:\neq\:{c} \\ $$ Commented by mr W last updated on 26/Nov/22 $${it}'{s}\:{not}\:{true}.\:{e}.{g}.\:{you}\:{can}\:{take}\: \\ $$$${a}={b}={c}=\mathrm{2},\:{and}\:{get}\:{abc}=\mathrm{8}.…
Question Number 50365 by prof Abdo imad last updated on 16/Dec/18 $${let}\:{J}\:=\begin{bmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\end{bmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{bmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{}\end{bmatrix} \\ $$$${element}\:{of}\:{M}_{\mathrm{3}} \left({R}\right) \\ $$$${find}\:{J}^{{n}} \\ $$$$ \\ $$ Terms of…