Question Number 210660 by hardmath last updated on 15/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210661 by hardmath last updated on 15/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210659 by hardmath last updated on 15/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210652 by mnjuly1970 last updated on 14/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210643 by ChantalYah last updated on 14/Aug/24 Answered by mahdipoor last updated on 14/Aug/24 $$\left.\mathrm{1}\right){e}^{{x}} ={t} \\ $$$${t}^{\mathrm{3}} −\mathrm{3}{t}−\frac{\mathrm{4}}{{t}}=\mathrm{0}\Rightarrow{t}^{\mathrm{4}} −\mathrm{3}{t}^{\mathrm{2}} −\mathrm{4}=\mathrm{0}\Rightarrow \\ $$$${t}^{\mathrm{2}}…
Question Number 210639 by ChantalYah last updated on 14/Aug/24 $${given}\:{that}\:{the}\:{roots} \\ $$$$\:{of}\:{the}\:{equation} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\left(\mathrm{4}+\mathrm{2}{k}\right){x}+\mathrm{2}{k}=\mathrm{0} \\ $$$${are}\:\alpha\:{and}\:\beta \\ $$$${find}\:{the}\:{value}\:{of}\:{k} \\ $$$${for}\:{which}\:\beta=\mathrm{3}\alpha \\ $$ Answered by…
Question Number 210629 by peter frank last updated on 14/Aug/24 Answered by Rasheed.Sindhi last updated on 14/Aug/24 $$\begin{cases}{{x}={a}+\left({a}+{d}\right)+\left({a}+\mathrm{2}{d}\right)+,…+\left({a}+\left({m}−\mathrm{1}\right){d}\right)}\\{{y}=\left({a}+{md}\right)+\left({a}+\left({m}+\mathrm{1}\right){d}\right)+…+\left({a}+\left(\mathrm{2}{m}−\mathrm{1}\right){d}\right)}\\{{z}=\left({a}+\mathrm{2}{md}\right)+\left({a}+\left(\mathrm{2}{m}+\mathrm{1}\right){d}\right)+…+\left({a}+\left(\mathrm{3}{m}−\mathrm{1}\right){d}\right)}\end{cases}\: \\ $$$$\begin{cases}{{x}−{ma}=\left({d}\right)+\left(\mathrm{2}{d}\right)+,…+\left(\left({m}−\mathrm{1}\right){d}\right)}\\{{y}−{ma}=\left({md}\right)+\left(\left({m}+\mathrm{1}\right){d}\right)+…+\left(\left(\mathrm{2}{m}−\mathrm{1}\right){d}\right)}\\{{z}−{ma}=\left(\mathrm{2}{md}\right)+\left(\left(\mathrm{2}{m}+\mathrm{1}\right){d}\right)+…+\left(\left(\mathrm{3}{m}−\mathrm{1}\right){d}\right)}\end{cases}\:\: \\ $$$$\begin{cases}{\frac{{x}−{ma}}{{d}}=\left(\mathrm{1}\right)+\left(\mathrm{2}\right)+,…+\left(\left({m}−\mathrm{1}\right)\right)}\\{\frac{{y}−{ma}}{{d}}=\left({m}\right)+\left(\left({m}+\mathrm{1}\right)\right)+…+\left(\left(\mathrm{2}{m}−\mathrm{1}\right)\right)\:}\\{\frac{{z}−{ma}}{{d}}=\left(\mathrm{2}{m}\right)+\left(\left(\mathrm{2}{m}+\mathrm{1}\right)\right)+…+\left(\left(\mathrm{3}{m}−\mathrm{1}\right)\right)}\end{cases}\: \\ $$$$…\:\: \\…
Question Number 210630 by peter frank last updated on 14/Aug/24 Answered by mm1342 last updated on 14/Aug/24 $${a}_{{n}} ={a}+\left({n}−\mathrm{1}\right){d}\:\:\:\&\:\:{b}_{{n}} =\mathrm{2}^{{n}−\mathrm{1}} {g} \\ $$$${c}_{{n}} ={a}_{{n}} +{b}_{{n}}…
Question Number 210587 by mnjuly1970 last updated on 13/Aug/24 $$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\sqrt{\:\mathrm{13}\:−\mathrm{12}\sqrt{{x}}\:\:}\:+\:\sqrt{\mathrm{25}\:−\mathrm{24}\sqrt{\mathrm{1}−{x}}\:} \\ $$$$ \\ $$$$\:\:\:\:\:\:{find}\::\:\:\:\:\mathrm{M}{in}\:\left(\:{f}\:\right)=? \\ $$$$ \\ $$$$ \\ $$ Commented by Frix…
Question Number 210591 by Tawa11 last updated on 13/Aug/24 $$\mathrm{If} \\ $$$$\:\:\:\:\mathrm{a}\:\:+\:\:\mathrm{b}\:\:=\:\:\mathrm{1} \\ $$$$\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{b}^{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\mathrm{then},\:\:\:\:\:\mathrm{a}^{\mathrm{11}} \:\:+\:\:\mathrm{b}^{\mathrm{11}} \:\:=\:\:?? \\ $$ Answered by mr…