Question Number 49570 by Tawa1 last updated on 07/Dec/18 $$\mathrm{Eliminate}\:\:\boldsymbol{\mathrm{t}}\:\:\mathrm{from}\:\mathrm{this}\:\mathrm{equation}:\:\:\left(\mathrm{1}\right)\:\:\:\mathrm{x}\:=\:\mathrm{1}\:+\:\mathrm{t},\:\:\:\mathrm{y}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{t}} \\ $$$$\left(\mathrm{2}\right)\:\:\mathrm{x}\:=\:\mathrm{3}\:+\:\mathrm{t}^{\mathrm{3}} \:,\:\:\:\:\:\mathrm{y}\:=\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{t}} \\ $$ Answered by afachri last updated on 07/Dec/18 $$\left.\mathrm{1}\right)\:\:{t}\:=\:{x}\:−\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\mathrm{so},\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:\mathrm{1}\:+\:\frac{\:\mathrm{1}\:}{\:{x}\:−\:\mathrm{1}\:}…
Question Number 49555 by ggny last updated on 07/Dec/18 $$\mathrm{Find}\:\mathrm{4}\:\: \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 180604 by mathlove last updated on 14/Nov/22 Answered by Frix last updated on 14/Nov/22 $${x}=\sqrt{\mathrm{2}}\:^{\sqrt{\mathrm{2}}\:^{\sqrt{\mathrm{2}}\:^{…} } } =\sqrt{\mathrm{2}}\:^{{x}} \\ $$$$\mathrm{ln}\:{x}\:={x}\mathrm{ln}\:\sqrt{\mathrm{2}} \\ $$$$\frac{\mathrm{ln}\:{x}}{{x}}=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}} \\…
Question Number 180603 by mr W last updated on 14/Nov/22 $${find}\:{the}\:{real}\:{solution}\:{of}\:{following} \\ $$$${equation}\:{system}: \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{xy}}+\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{p}} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{yz}}+\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{q}} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{zx}}+\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{r}}…
Question Number 180569 by SAMIRA last updated on 13/Nov/22 $$\sqrt{\boldsymbol{{x}}+\mathrm{4}}\:−\:\sqrt{\boldsymbol{{x}}−\mathrm{1}}\:>\:\sqrt{\mathrm{4}\boldsymbol{{x}}+\mathrm{5}} \\ $$ Commented by Frix last updated on 14/Nov/22 $$\mathrm{false}. \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{for}\:{x}\geqslant\mathrm{0}:\:\sqrt{{x}+\mathrm{4}}<\sqrt{\mathrm{4}{x}+\mathrm{5}} \\…
Question Number 180565 by depressiveshrek last updated on 13/Nov/22 $$\left(\mathrm{2}{x}+\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\mathrm{3}{y}+\sqrt{\mathrm{9}{y}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{1} \\ $$$$\left(\mathrm{4}{x}+\mathrm{6}{y}\right)^{\mathrm{3}} =? \\ $$$${Show}\:{full}\:{solution} \\ $$ Commented by Frix last updated on…
Question Number 115023 by bobhans last updated on 23/Sep/20 $${solve}\:\begin{cases}{\mathrm{7}{x}−\mathrm{5}{y}+\mathrm{3}{z}=\mathrm{6}}\\{\mathrm{2}{x}+\mathrm{4}{y}−\mathrm{5}{z}=−\mathrm{5}}\\{\mathrm{9}{x}−\mathrm{8}{y}+\mathrm{2}{z}=−\mathrm{1}}\end{cases}.\:{Find}\:{x}+{y}+{z}\: \\ $$ Answered by bemath last updated on 23/Sep/20 Answered by PRITHWISH SEN 2 last…
Question Number 115018 by bemath last updated on 23/Sep/20 $${If}\:\mathrm{9}^{{x}} +\mathrm{9}^{−{x}} \:=\:\mathrm{3}^{\mathrm{2}+{x}} +\mathrm{3}^{\mathrm{2}−{x}} \:−\mathrm{20},\:{then}\: \\ $$$$\mathrm{27}^{{x}} +\mathrm{27}^{−{x}} \:=? \\ $$ Answered by bobhans last updated…
Question Number 180550 by a.lgnaoui last updated on 13/Nov/22 $${Resoudre}\: \\ $$$${af}^{'} \left({x}\right)+\frac{{b}}{{f}\left({x}\right)}+{c}=\mathrm{0}\:\:\:\:\left({a},{b},{c}\right)\in\mathbb{R}^{\mathrm{3}} \\ $$ Answered by mr W last updated on 13/Nov/22 $${a}\frac{{dy}}{{dx}}=−\frac{{b}+{cy}}{{y}} \\…
Question Number 180542 by a.lgnaoui last updated on 13/Nov/22 $${Resoudre}\:{dans}\:\mathbb{R} \\ $$$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)…