Menu Close

Category: Algebra

Question-48559

Question Number 48559 by behi83417@gmail.com last updated on 25/Nov/18 Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18 $${z}\left({x}^{\mathrm{2}} −{yz}\right)={a}^{\mathrm{2}} {z} \\ $$$${x}\left({y}^{\mathrm{2}} −{xz}\right)={b}^{\mathrm{2}} {x} \\ $$$${y}\left({z}^{\mathrm{2}}…

In-a-hospital-unit-there-are-8-nurses-and-5-physicians-7-of-them-are-female-nurses-and-3-of-them-are-male-physicians-what-is-the-the-probability-of-selecting-a-staff-who-is-Nurse-or-Male-plzz-help-

Question Number 48553 by Cheyboy last updated on 25/Nov/18 $$\mathrm{In}\:\mathrm{a}\:\mathrm{hospital}\:\mathrm{unit},\mathrm{there}\:\mathrm{are}\:\mathrm{8}\:\mathrm{nurses} \\ $$$$\mathrm{and}\:\mathrm{5}\:\mathrm{physicians}.\:\mathrm{7}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are} \\ $$$$\mathrm{female}\:\mathrm{nurses}\:\mathrm{and}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are} \\ $$$$\mathrm{male}\:\mathrm{physicians}. \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of} \\ $$$$\mathrm{selecting}\:\mathrm{a}\:\mathrm{staff}\:\mathrm{who}\:\mathrm{is}\:\mathrm{Nurse}\:\mathrm{or} \\ $$$$\mathrm{Male}? \\ $$$$\mathrm{plzz}\:\mathrm{help} \\…

For-every-natural-numbers-n-Find-the-value-of-0-j-i-n-1-j-n-i-j-

Question Number 48509 by naka3546 last updated on 24/Nov/18 $${For}\:\:{every}\:\:{natural}\:\:{numbers}\:\:{n}\:\: \\ $$$${Find}\:\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{0}\leqslant{j}\leqslant{i}\leqslant{n}} {\sum}\:\:\frac{\left(−\mathrm{1}\right)^{{j}} }{\left({n}\:−\:{i}\right)!\:{j}!} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

find-the-minimum-value-of-function-f-x-x-2-4-x-2-8x-12-x-25-x-2-4-x-2-16x-16-x-80-

Question Number 179570 by infinityaction last updated on 30/Oct/22 $$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\frac{\mathrm{4}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }−\mathrm{8}\boldsymbol{\mathrm{x}}−\frac{\mathrm{12}}{\boldsymbol{\mathrm{x}}}+\mathrm{25}}\:+\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\frac{\mathrm{4}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+−\mathrm{16}\boldsymbol{\mathrm{x}}−\frac{\mathrm{16}}{\boldsymbol{\mathrm{x}}}+\mathrm{80}} \\ $$ Answered by a.lgnaoui last updated on 01/Nov/22…

at-h-2-a-t-k-2-R-2-where-a-h-k-R-are-constants-Then-find-s-2-t-1-t-2-2-1-1-t-1-2-t-2-2-where-t-1-t-2-are-roots-of-eq-at-top-

Question Number 48482 by ajfour last updated on 24/Nov/18 $$\left({at}−{h}\right)^{\mathrm{2}} +\left(\frac{{a}}{{t}}−{k}\right)^{\mathrm{2}} ={R}^{\:\mathrm{2}} \\ $$$${where}\:\:\:{a},\:{h},\:{k},\:{R}\:{are}\:{constants}. \\ $$$${Then}\:{find}\: \\ $$$$\:\:\:{s}^{\mathrm{2}} \:=\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}_{\mathrm{1}} ^{\mathrm{2}} {t}_{\mathrm{2}} ^{\mathrm{2}}…

Question-113997

Question Number 113997 by Aina Samuel Temidayo last updated on 16/Sep/20 Answered by bobhans last updated on 16/Sep/20 $${consider}\::\:\sqrt{\mathrm{2}}\:+\sqrt[{\mathrm{4}}]{\mathrm{2}}\:+\mathrm{1}\:=\:\left(\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}.\left(\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)+\mathrm{1}^{\mathrm{2}} \:=\:\frac{\left(\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)^{\mathrm{3}} −\mathrm{1}^{\mathrm{3}} }{\:\sqrt[{\mathrm{4}}]{\mathrm{2}}−\mathrm{1}} \\ $$$${then}\:\frac{\mathrm{7}}{\left(\sqrt[{\mathrm{4}}]{\mathrm{2}}\right)^{\mathrm{2}}…

Question-113996

Question Number 113996 by Aina Samuel Temidayo last updated on 16/Sep/20 Commented by MJS_new last updated on 16/Sep/20 $$\frac{\mathrm{ln}\:\frac{\mathrm{81}}{\mathrm{8}}}{\mathrm{2ln}\:\frac{\mathrm{9}}{\mathrm{2}}}=\frac{\mathrm{ln}\:\sqrt{\frac{\mathrm{81}}{\mathrm{8}}}}{\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{2}}}=\frac{\mathrm{ln}\:\frac{\mathrm{9}}{\:\sqrt{\mathrm{8}}}}{\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{2}}}=\mathrm{log}_{\frac{\mathrm{9}}{\mathrm{2}}} \frac{\mathrm{9}}{\:\sqrt{\mathrm{8}}} \\ $$ Answered by bobhans…