Menu Close

Category: Algebra

A-1-2018-1-2019-1-2050-find-the-integer-part-of-1-A-

Question Number 178777 by mr W last updated on 21/Oct/22 $${A}=\frac{\mathrm{1}}{\mathrm{2018}}+\frac{\mathrm{1}}{\mathrm{2019}}+…+\frac{\mathrm{1}}{\mathrm{2050}} \\ $$$${find}\:{the}\:{integer}\:{part}\:{of}\:\frac{\mathrm{1}}{{A}}. \\ $$ Commented by Frix last updated on 21/Oct/22 $$\frac{\mathrm{1}}{{A}}\:\mathrm{should}\:\mathrm{be}\:\mathrm{close}\:\mathrm{to}\:\frac{\mathrm{2018}+\mathrm{2050}}{\mathrm{2}×\mathrm{33}}=\mathrm{61}.\mathrm{6363}… \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{61}…

Question-113241

Question Number 113241 by pallob last updated on 11/Sep/20 Answered by Aina Samuel Temidayo last updated on 11/Sep/20 $$\sqrt[{\mathrm{5}}]{\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{30}} }\:}}=\sqrt[{\left(\mathrm{5}×\mathrm{2}×\mathrm{3}\right)}]{\mathrm{x}^{\mathrm{30}} }=\sqrt[{\mathrm{30}}]{\mathrm{x}^{\mathrm{30}} }=\mathrm{x}^{\frac{\mathrm{30}}{\mathrm{30}}} =\mathrm{x}^{\mathrm{1}} =\mathrm{x} \\…

3x-2-mod-5-3x-4-mod-7-3x-6-mod-11-x-

Question Number 178747 by cortano1 last updated on 21/Oct/22 $$\:\:\begin{cases}{\mathrm{3x}=\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{5}\right)}\\{\mathrm{3x}=\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{7}\right)\:}\\{\mathrm{3x}=\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{11}\right)}\end{cases} \\ $$$$\:\mathrm{x}=? \\ $$ Answered by Rasheed.Sindhi last updated on 21/Oct/22 $$\:\:\begin{cases}{\mathrm{3x}=\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{5}\right)….\left(\mathrm{i}\right)}\\{\mathrm{3x}=\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{7}\right)….\left(\mathrm{ii}\right)\:}\\{\mathrm{3x}=\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{11}\right)….\left(\mathrm{iii}\right)}\end{cases}\:;\:\mathrm{x}=? \\ $$$$\left({i}\right)\Rightarrow\mathrm{3}{x}\equiv\mathrm{2}+\mathrm{2}×\mathrm{5}\left({mod}\:\mathrm{5}\right) \\…

The-solution-of-2-ax-2-bx-c-3-is-2-3-1-if-a-gt-0-ax-2-b-3-x-c-0-has-and-only-has-10-integer-solutions-find-the-range-of-a-2-find-x-ax-2-b-1-x-5-lt-0-

Question Number 178715 by CrispyXYZ last updated on 20/Oct/22 $$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{2}\leqslant{ax}^{\mathrm{2}} +{bx}+{c}\leqslant\mathrm{3}\:\mathrm{is}\:\left[\mathrm{2},\:\mathrm{3}\right] \\ $$$$\left.\mathrm{1}\right)\:\mathrm{if}\:{a}>\mathrm{0},\:{ax}^{\mathrm{2}} +\left({b}−\mathrm{3}\right){x}−{c}\leqslant\mathrm{0}\:\mathrm{has}\:\mathrm{and}\:\mathrm{only}\:\mathrm{has}\:\mathrm{10}\:\mathrm{integer}\:\mathrm{solutions}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:{x}:\:{ax}^{\mathrm{2}} +\left({b}−\mathrm{1}\right){x}+\mathrm{5}<\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…

If-x-5-x-5-then-x-x-would-be-greater-than-a-5-2-b-5-3-c-5-d-5-1-e-5-1-

Question Number 113154 by I want to learn more last updated on 11/Sep/20 $$\mathrm{If}\:\:\:\:\:\:\lfloor\mathrm{x}\:\:+\:\:\sqrt{\mathrm{5}}\rfloor\:\:\:=\:\:\:\lfloor\mathrm{x}\rfloor\:\:+\:\:\lfloor\mathrm{5}\rfloor \\ $$$$\mathrm{then}\:\:\:\:\:\lfloor\mathrm{x}\rfloor\:\:−\:\:\mathrm{x}\:\:\:\:\mathrm{would}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{2}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{3}\:\:\:\:\:\:\left(\mathrm{c}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:+\:\:\mathrm{1}\:\:\:\:\:\:\:\left(\mathrm{e}\right)\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{1} \\ $$ Answered by 1549442205PVT last updated…

Given-2x-2-y-2-12y-2-7x-2-647-for-x-y-Z-Find-the-remaider-if-3x-2-y-4-divide-by-11-

Question Number 178686 by greougoury555 last updated on 20/Oct/22 $$\:{Given}\:\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}{y}^{\mathrm{2}} =\mathrm{7}{x}^{\mathrm{2}} +\mathrm{647}\: \\ $$$$\:{for}\:{x},{y}\:\varepsilon\:\mathbb{Z}\:. \\ $$$$\:{Find}\:{the}\:{remaider}\:{if}\:\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{4}} \:{divide}\:{by} \\ $$$$\:\:\mathrm{11}\:. \\ $$ Answered…

1-a-1-0-b-2-x-2-2ax-a-b-1-b-2-find-the-range-of-x-x-R-

Question Number 178640 by CrispyXYZ last updated on 19/Oct/22 $$\forall−\mathrm{1}\leqslant{a}\leqslant\mathrm{1},\:\exists\mathrm{0}\leqslant{b}\leqslant\mathrm{2},\:{x}^{\mathrm{2}} −\mathrm{2}{ax}+{a}\geqslant\mid{b}−\mathrm{1}\mid+\mid{b}−\mathrm{2}\mid \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x}.\:\left({x}\in\mathbb{R}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com