Question Number 113109 by bemath last updated on 11/Sep/20 Commented by bemath last updated on 11/Sep/20 $$\mathrm{any}\:\mathrm{one}\:\mathrm{help}\:\mathrm{this}\:\mathrm{question}? \\ $$ Commented by bemath last updated on…
Question Number 178612 by Acem last updated on 19/Oct/22 $${Be}\:{calm}\:{then}\:{solve}\:\mid\frac{{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{8}}{{x}+\mathrm{3}}\mid\geqslant\:\mathrm{2} \\ $$ Answered by cortano1 last updated on 19/Oct/22 $$\:\mathrm{x}\neq−\mathrm{3} \\ $$$$\:\mid\mathrm{x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{8}\mid\geqslant\mid\mathrm{2x}+\mathrm{6}\mid \\…
Question Number 47543 by maxmathsup by imad last updated on 11/Nov/18 $${solve}\:\left(\mathrm{1}+{ix}\right)^{{n}} ={n}\:\:\:{with}\:{x}\:{unknown}\:{real}\:{and}\:{n}\:{integr}\:{natural}\:. \\ $$ Answered by arcana last updated on 11/Nov/18 $${ln}\left({e}^{\left(\mathrm{1}+{ix}\right){n}} \right)={n}\:{ln}\left({e}\:{e}^{{ix}} \right)={n}…
Question Number 178600 by Acem last updated on 18/Oct/22 $${Solve}\:\mathrm{1}{st}:\:\mid{x}−\mathrm{9}\mid\leqslant\:−\mathrm{1}\:,\:\mathrm{2}{nd}:\:\mid\mathrm{10}{x}+\mathrm{1}\mid>\:−\mathrm{4} \\ $$ Answered by Acem last updated on 19/Oct/22 $$ \\ $$$$\mathrm{1}{st}:\:{Impossible} \\ $$$$ \\…
Question Number 178596 by Acem last updated on 18/Oct/22 $${Let}\:\sqrt{{a}}+\:\sqrt{{b}}=\:\sqrt{\mathrm{2023}}\:\:\:,\:{Find}\:{values}\:{of}\:{a},\:{b}\:\in\:\mathbb{N} \\ $$ Commented by mr W last updated on 18/Oct/22 $${a}=\mathrm{7}\left(\mathrm{17}−{n}\right)^{\mathrm{2}} \\ $$$${b}=\mathrm{7}{n}^{\mathrm{2}} \\ $$$${with}\:{n}=\mathrm{1},\mathrm{2},…,\mathrm{16}…
Question Number 178595 by Acem last updated on 18/Oct/22 $${Solve}\:\frac{\mathrm{2}{x}}{{x}+\mathrm{1}}\geqslant\:\mathrm{3} \\ $$ Answered by Acem last updated on 19/Oct/22 $${The}\:{safest}\:{and}\:{surest}\:{way}\:{to}\:{avoid}\:{making} \\ $$$$\:{mental}\:{mistakes}: \\ $$$$ \\…
Question Number 178586 by infinityaction last updated on 18/Oct/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 178576 by Spillover last updated on 18/Oct/22 $$\mathrm{If}\:\mathrm{a}>\mathrm{b}>\mathrm{0}\:\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{b}<\frac{\mathrm{ae}^{\mathrm{x}} +\mathrm{be}^{−\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} }<\mathrm{a} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 178577 by Spillover last updated on 18/Oct/22 $$\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\mathrm{cosh}\:^{−\mathrm{1}} \mathrm{x}=\pm\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$$\left(\mathrm{b}\right)\mathrm{tanh}\:^{−\mathrm{1}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}\right),\mid\mathrm{x}\mid<\mathrm{1} \\ $$ Answered by depressiveshrek last updated on…
Question Number 178575 by Spillover last updated on 18/Oct/22 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$\mathrm{e}^{\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{x}} =\mathrm{1}+\mathrm{e}^{\mathrm{cosh}\:^{−\mathrm{1}} \mathrm{x}} \\ $$ Answered by mr W last updated on 19/Oct/22…