Menu Close

Category: Algebra

Prove-that-the-equation-of-the-circle-passing-through-the-points-of-intersection-of-these-two-curves-y-1-c-x-y-x-2-c-lt-2-3-3-is-x-c-2-2-y-1-2-1-c-2-4-

Question Number 118634 by ajfour last updated on 18/Oct/20 $${Prove}\:{that}\:{the}\:{equation}\:{of}\:{the}\:{circle} \\ $$$${passing}\:{through}\:{the}\:{points}\:{of} \\ $$$${intersection}\:{of}\:{these}\:{two}\:{curves}: \\ $$$$\:\:{y}=\mathrm{1}+\frac{{c}}{{x}}\:;\:\:{y}={x}^{\mathrm{2}} \:\:\:\:\:\left({c}\:<\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\right)\: \\ $$$${is}\:\:\:\left({x}−\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1}+\frac{{c}^{\mathrm{2}} }{\mathrm{4}}\:\:. \\ $$ Commented…

sin-2x-cos-xd-x-

Question Number 53051 by Abror last updated on 16/Jan/19 $$\int\mathrm{sin}\:\left(\mathrm{2}{x}\right)\mathrm{cos}\:{xd}\left({x}\right)= \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19 $$\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{2}{sin}\mathrm{2}{xcosxdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left({sin}\mathrm{3}{x}+{sinx}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{−{cos}\mathrm{3}{x}}{\mathrm{3}}+\frac{−{cosx}}{}\right]+{c} \\…

Question-184084

Question Number 184084 by HeferH last updated on 02/Jan/23 Answered by Rasheed.Sindhi last updated on 03/Jan/23 $${w}^{\mathrm{3}} =\mathrm{1}\Rightarrow{w}=\mathrm{1},\omega,\omega^{\mathrm{2}} \\ $$$${Let}\:{w}_{\mathrm{1}} =\omega\:\&\:{w}_{\mathrm{2}} =\omega^{\mathrm{2}} \\ $$$${x}={a}+{b} \\…

f-x-x-3-3x-2-ax-is-decreasing-on-1-2-then-which-is-correct-1-3-24-2-24-3-3-4-3-24-

Question Number 184083 by mnjuly1970 last updated on 02/Jan/23 $$ \\ $$$$\:\:\:\:{f}\left({x}\right)=\:{x}^{\:\mathrm{3}} \:+\mathrm{3}{x}^{\:\mathrm{2}} −{ax}\:\:\:{is}\:\: \\ $$$$\:\:\:\:\:{decreasing}\:{on}\:\:\left[\:−\mathrm{1}\:,\:\mathrm{2}\right] \\ $$$$\:\:\:\:\:\:{then}\:\:{which}\:\:{is}\:{correct}… \\ $$$$\:\:\:\:\:\mathrm{1}:\:\:\:\left[\:−\mathrm{3}\:,\mathrm{24}\right] \\ $$$$\:\:\:\:\:\mathrm{2}:\:\:\left[\:\mathrm{24}\:,\:+\infty\right) \\ $$$$\:\:\:\:\:\:\mathrm{3}:\:\left(−\infty\:,−\mathrm{3}\right] \\…

If-the-tangents-at-the-end-of-a-focal-chord-of-parabola-meet-the-tangent-at-the-vertex-in-C-D-prove-that-CD-substends-a-right-angle-at-the-focus-

Question Number 118482 by peter frank last updated on 17/Oct/20 $$\mathrm{If}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{a}\:\mathrm{focal}\:\:\mathrm{chord}\:\mathrm{of} \\ $$$$\mathrm{parabola}\:\mathrm{meet}\:\mathrm{the} \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{the}\:\:\mathrm{vertex} \\ $$$$\mathrm{in}\:\mathrm{C},\mathrm{D}.\mathrm{prove}\:\mathrm{that}\:\mathrm{CD} \\ $$$$\mathrm{substends}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{focus} \\ $$…

Question-2-x-2-2x-1-1-y-2-solve-this-equation-if-x-y-Z-

Question Number 118452 by 2004 last updated on 17/Oct/20 $$\boldsymbol{{Question}}: \\ $$$$\mathrm{2}^{\boldsymbol{{x}}} +\mathrm{2}^{\mathrm{2}\boldsymbol{{x}}+\mathrm{1}} +\mathrm{1}=\boldsymbol{{y}}^{\mathrm{2}} \:\:\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{equation}}\:\boldsymbol{{if}} \\ $$$$\boldsymbol{{x}},\boldsymbol{{y}\epsilon}\mathbb{Z} \\ $$ Commented by prakash jain last updated…