Question Number 183350 by Spillover last updated on 25/Dec/22 $${Find}\: \\ $$$$\left({a}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{3}{x}+\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$$\left({b}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\left({c}\right)\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}{x}+\mathrm{1}}\:−\mathrm{4}}{{x}−\mathrm{5}} \\ $$ Commented by…
Question Number 183342 by Shrinava last updated on 25/Dec/22 $$\mathrm{Find}:\:\:\:\:\:\mathrm{3}\:−\:\frac{\mathrm{2}}{\mathrm{3}\:−\:\frac{\mathrm{2}}{\mathrm{3}\:−\:\frac{\mathrm{2}}{…}}}\:=\:? \\ $$ Answered by Red1ight last updated on 25/Dec/22 $$\mathrm{3}−\frac{\mathrm{2}}{{x}}={x} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{8}}}{\mathrm{2}}…
Question Number 117781 by hmh2k20 last updated on 13/Oct/20 $$\:\:\:\:\:\:\:\:\:\:\:\mathrm{Log}\:\left(\mathrm{cos}\beta\right)\:=\:\mathrm{p}\:\:\:\:\:\Rightarrow\:\:\:\mathrm{cos}\:\beta\:=\:\mathrm{10}^{\mathrm{p}} \:\: \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\mathrm{sec}\beta\:=\:\:\frac{\mathrm{1}}{\mathrm{cos}\beta}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{10}^{\mathrm{p}} }\:\:=\:\mathrm{10}^{−\mathrm{p}} \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\mathrm{Log}\:\left(\mathrm{sec}\beta\right)\:=\:\:\mathrm{Log}\:\mathrm{10}^{−\mathrm{p}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{p}\:\mathrm{Log}\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{p} \\ $$ Answered by $@y@m…
Question Number 117767 by sumit Singh last updated on 13/Oct/20 $${x}^{\mathrm{2}} +{y}_{} ^{\mathrm{2}} ={a}^{\mathrm{2}} \sqrt{\mathrm{2}\:} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \:\:\:\:\:\: \\ $$$$ \\ $$$${what}\:{is}\:{intersection}\:\:{Angle}=?\: \\…
Question Number 52200 by gunawan last updated on 04/Jan/19 $$\mathrm{proof}\:\mathrm{that}\: \\ $$$$\sqrt{{z}^{\mathrm{2}} }\:\neq\:{z}\:,\:{z}\:\in\:\mathbb{C} \\ $$$$\mathrm{example} \\ $$$${i}=\sqrt{−\mathrm{1}} \\ $$$${i}^{\mathrm{2}} =−\mathrm{1} \\ $$$${i}^{\mathrm{4}} =\mathrm{1} \\ $$$$\sqrt{{i}^{\mathrm{4}}…
Question Number 183262 by Engr_Jidda last updated on 24/Dec/22 $${Simplify}\:\:^{\mathrm{3}} \sqrt{\mathrm{56}^{\mathrm{3}} \sqrt{\mathrm{4}\:\:}\:−\:\mathrm{157}^{\mathrm{3}} \sqrt{\mathrm{9}}\:\:+\:\mathrm{130}^{\mathrm{3}} \sqrt{\mathrm{6}}\:} \\ $$$${into}\:{a}\:{compound}\:{surd}. \\ $$ Commented by JDamian last updated on 24/Dec/22…
Question Number 183241 by depressiveshrek last updated on 23/Dec/22 $${Find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{which} \\ $$$${is}\:{tangent}\:{to}\:{the}\:{parabola}\:{y}^{\mathrm{2}} =\mathrm{12}{x} \\ $$$${and}\:{forms}\:{an}\:{angle}\:{of}\:\mathrm{45}°\:{with}\: \\ $$$${the}\:{line}\:{y}=\mathrm{3}{x}−\mathrm{4}. \\ $$ Answered by cortano1 last updated on…
Question Number 183205 by cortano1 last updated on 23/Dec/22 $$\:\:{Find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{11}} \:{in}\: \\ $$$$\:\left(\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{3}\right)^{\mathrm{6}} \:. \\ $$ Answered by mr W last updated on 23/Dec/22…
Question Number 117666 by danielasebhofoh last updated on 13/Oct/20 Commented by bemath last updated on 13/Oct/20 $$\mathrm{set}\:\sqrt{\mathrm{ax}+\mathrm{b}}\:=\mathrm{t}\:\Rightarrow\:\mathrm{ax}+\mathrm{b}\:=\:\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{t}^{\mathrm{2}} −\mathrm{b}}{\mathrm{a}}\:\Rightarrow\mathrm{dx}\:=\:\frac{\mathrm{2t}\:\mathrm{dt}}{\mathrm{a}} \\ $$$$\int\:\frac{\mathrm{2t}\:\mathrm{dt}}{\mathrm{a}\left(\frac{\mathrm{t}^{\mathrm{2}} −\mathrm{b}}{\mathrm{a}}\:+\:\mathrm{c}\right).\mathrm{t}}\:=\:\int\:\frac{\mathrm{2}\:\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\left(\mathrm{b}−\mathrm{ac}\right)} \\…
Question Number 117649 by Ar Brandon last updated on 13/Oct/20 $$\mathrm{Let}\:\mathrm{P}\left({x}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{P}\left({k}\right)=\frac{{k}}{{k}+\mathrm{1}}\:\:\mathrm{for}\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},…,\mathrm{n}.\:\mathrm{Then}\:\mathrm{P}\left(\mathrm{n}+\mathrm{1}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\: \\ $$$$\left(\mathrm{A}\right)\:−\mathrm{1}\:\mathrm{if}\:\mathrm{n}\:\mathrm{is}\:\mathrm{even}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{1}\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{odd} \\ $$$$\left(\mathrm{C}\right)\:\frac{{n}}{{n}+\mathrm{2}}\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{even}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\frac{{n}}{{n}+\mathrm{2}}\:\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{odd} \\ $$$$\mathrm{Which}\:\mathrm{among}\:\mathrm{the}\:\mathrm{four}\:\mathrm{proposals}\:\mathrm{is}/\mathrm{are}\:\mathrm{correct}\:? \\ $$ Answered by prakash jain…