Menu Close

Category: Algebra

Question-112408

Question Number 112408 by byaw last updated on 07/Sep/20 Commented by byaw last updated on 07/Sep/20 $$\mathrm{Please}\:\mathrm{help}\:\mathrm{to}\:\mathrm{use}\:\mathrm{latex}\:\mathrm{to}\:\mathrm{draw}\: \\ $$$$\mathrm{this}\:\mathrm{number}\:\mathrm{line}.\:\mathrm{Thank}\:\mathrm{you}. \\ $$ Terms of Service Privacy…

If-1-sin-x-sin-2-x-sin-3-x-4-2-3-0-lt-x-lt-pi-Find-the-value-of-x-

Question Number 177933 by Spillover last updated on 11/Oct/22 $$\mathrm{If}\:\mathrm{1}+\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+…\infty \\ $$$$=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\:\:,\mathrm{0}<\mathrm{x}<\pi\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$ \\ $$ Answered by Ar Brandon last updated on…

If-a-b-c-are-in-A-P-show-that-1-b-c-1-c-a-1-b-a-are-in-A-P-

Question Number 177932 by Spillover last updated on 11/Oct/22 $$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}\:\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{c}}\:+\sqrt{\mathrm{a}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{b}}+\sqrt{\mathrm{a}}},\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P} \\ $$ Answered by Ar Brandon last updated on 11/Oct/22 $${a},\:{b},\:{c}\:\mathrm{in}\:{AP}\:\Rightarrow{b}−{a}={c}−{b}={d}\:\left(\mathrm{common}\:\mathrm{diff}\right) \\ $$$$\mathrm{If}\:{u}_{\mathrm{1}}…

Prove-that-x-3-y-3-x-y-2-3y-x-y-2-3xy-x-3-y-3-xy-x-2-y-2-xy-

Question Number 177928 by Spillover last updated on 11/Oct/22 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\left[\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} +\mathrm{3y}}\right]\boldsymbol{\div}\left[\frac{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{3xy}}{\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} }\right]×\left[\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }\right]=\mathrm{xy} \\ $$ Answered by Ar…

Prove-by-the-principle-of-induction-that-1-4-7-2-5-8-3-6-9-n-n-3-n-6-n-4-n-1-n-6-n-7-

Question Number 177931 by Spillover last updated on 11/Oct/22 $$\mathrm{Prove}\:\mathrm{by}\:\mathrm{the}\:\mathrm{principle}\:\mathrm{of}\: \\ $$$$\mathrm{induction}\:\mathrm{that} \\ $$$$\mathrm{1}.\mathrm{4}.\mathrm{7}+\mathrm{2}.\mathrm{5}.\mathrm{8}+\mathrm{3}.\mathrm{6}.\mathrm{9}+…\mathrm{n}\left(\mathrm{n}+\mathrm{3}\right)\left(\mathrm{n}+\mathrm{6}\right) \\ $$$$=\frac{\mathrm{n}}{\mathrm{4}}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{6}\right)\left(\mathrm{n}+\mathrm{7}\right) \\ $$ Answered by Ar Brandon last updated on…