Menu Close

Category: Algebra

Question-177510

Question Number 177510 by Spillover last updated on 06/Oct/22 Commented by mr W last updated on 06/Oct/22 $${sir}:\:{here}\:{is}\:{a}\:{forum},\:{a}\:{public}\:{place} \\ $$$${for}\:{exchanging}\:{with}\:{other}\:{people}.\: \\ $$$${here}\:{you}\:{can}\:{post}\:{your}\:{questions} \\ $$$${to}\:{ask}\:{other}\:{prople}\:{for}\:{solutions}\:{or} \\…

let-p-x-x-i-n-x-i-n-with-i-2-1-1-find-p-x-at-form-a-k-x-k-2-find-the-roots-of-p-x-3-factorize-inside-C-x-p-x-4-factorize-inside-R-x-the-polynom-p-x-5-decompose-the-fraction-F-

Question Number 46425 by maxmathsup by imad last updated on 25/Oct/18 $${let}\:{p}\left({x}\right)=\left({x}+{i}\right)^{{n}} −\left({x}−{i}\right)^{{n}} \:\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{p}\left({x}\right)\:{at}\:{form}\:\Sigma\:{a}_{{k}} {x}^{{k}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right) \\…

If-0-lt-a-b-then-a-b-a-b-dx-dy-xy-x-y-b-a-2-log-b-a-log-2-b-a-

Question Number 177492 by Shrinava last updated on 06/Oct/22 $$\mathrm{If}\:\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\:\mathrm{then}: \\ $$$$\int_{\:\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\int_{\:\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\:\frac{\mathrm{dx}\:\mathrm{dy}}{\:\sqrt{\mathrm{xy}\:\left(\mathrm{x}\:+\:\mathrm{y}\right)}}\:\:\leqslant\:\:\frac{\mathrm{b}−\mathrm{a}}{\mathrm{2}}\:\centerdot\:\mathrm{log}\:\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\:+\:\mathrm{log}^{\mathrm{2}} \:\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \\ $$ Terms of Service Privacy Policy Contact:…

let-p-x-1-ix-5-1-with-i-2-1-1-solve-inside-C-x-the-equation-p-x-0-2-factorize-inside-C-x-the-polynom-p-x-

Question Number 46420 by maxmathsup by imad last updated on 25/Oct/18 $${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{\mathrm{5}} −\mathrm{1}\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{solve}\:{inside}\:{C}\left[{x}\right]\:{the}\:{equation}\:{p}\left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right) \\ $$$$ \\ $$$$ \\ $$ Terms…

Question-111939

Question Number 111939 by Khanacademy last updated on 05/Sep/20 Answered by bemath last updated on 05/Sep/20 $${consider}\:\mathrm{tan}\:{x}+\mathrm{tan}\:{y}\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:+\:\frac{\mathrm{sin}\:{y}}{\mathrm{cos}\:{y}}\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\frac{\mathrm{sin}\:\left({x}+{y}\right)}{\mathrm{cos}\:{x}.\mathrm{cos}\:{y}}\:=\:\mathrm{4}\:\Rightarrow\:\mathrm{sin}\:\left({x}+{y}\right)=\mathrm{4}×\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left({x}+{y}\right)\:=\:\mathrm{6}\:.\:{If}\:{x},{y}\in\mathbb{R}\:,\:{it}\:{is}\: \\ $$$${impossible}…

Find-the-sum-of-the-series-1-1-x-1-1-x-1-1-x-

Question Number 46401 by Tawa1 last updated on 25/Oct/18 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}:\:\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\sqrt{\mathrm{x}}}\:,\:\:\frac{\mathrm{1}}{\mathrm{1}\:−\:\mathrm{x}}\:,\:\:\frac{\mathrm{1}}{\mathrm{1}\:−\:\sqrt{\mathrm{x}}}\:\:,\:\:…\: \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 25/Oct/18 $${pls}\:{add}\:{few}\:{more}\:{term}\:{or}\:{upload}\:{the}\:{photo}\:{of}\:{question}… \\ $$ Terms of Service…

Question-46395

Question Number 46395 by Meritguide1234 last updated on 25/Oct/18 Answered by MJS last updated on 25/Oct/18 $${x}=\sqrt{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{x}}}}}}} \\ $$$${x}=\sqrt{\mathrm{5}}−\frac{\mathrm{5}{x}+\mathrm{3}}{\mathrm{8}{x}+\mathrm{5}} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{5}−\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{4}}{x}+\frac{\mathrm{3}−\mathrm{5}\sqrt{\mathrm{5}}}{\mathrm{8}}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\frac{\mathrm{7}}{\mathrm{4}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}…