Menu Close

Category: Algebra

If-r-1-n-t-r-n-n-1-n-2-n-3-8-then-lim-n-r-1-n-1-t-r-

Question Number 110173 by ajfour last updated on 27/Aug/20 $${If}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{t}_{{r}} =\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)}{\mathrm{8}} \\ $$$${then}\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{t}_{{r}} }\:=\:? \\ $$$$ \\ $$ Answered by…

If-we-have-5-people-how-many-ways-can-they-be-seated-in-a-row-on-a-chair-if-their-are-a-7-chairs-b-3-chairs-available-

Question Number 110156 by I want to learn more last updated on 27/Aug/20 $$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{5}\:\mathrm{people},\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{they}\:\mathrm{be}\:\mathrm{seated}\:\mathrm{in}\:\mathrm{a}\:\mathrm{row} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{chair},\:\mathrm{if}\:\mathrm{their}\:\mathrm{are}, \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{7}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\mathrm{3}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\:\mathrm{available} \\ $$ Answered by mr W last…

If-we-have-5-people-how-many-ways-can-they-be-seated-on-a-round-table-if-there-are-a-7-chairs-b-3-chairs-available-

Question Number 110157 by I want to learn more last updated on 27/Aug/20 $$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{5}\:\:\mathrm{people},\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{they}\:\mathrm{be}\:\mathrm{seated} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{round}\:\mathrm{table},\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}, \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{7}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\mathrm{3}\:\:\mathrm{chairs}\:\:\:\:\:\:\:\:\:\:\:\mathrm{available} \\ $$ Answered by bemath last updated…

Solve-the-system-following-of-equations-x-y-z-2-2x-3y-z-1-x-2-y-2-2-z-1-2-9-

Question Number 110087 by 1549442205PVT last updated on 27/Aug/20 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{following}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{2}}\\{\mathrm{2x}+\mathrm{3y}+\mathrm{z}=\mathrm{1}}\\{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{9}}\end{cases} \\ $$ Commented by bemath last updated on 27/Aug/20 $$\:\:\:\left[\bigtriangleup\frac{{be}}{{math}}\bigtriangledown\right]…