Menu Close

Category: Algebra

Given-f-x-x-4-ax-3-bx-2-cx-d-where-a-b-c-and-d-are-real-number-suppose-the-graph-f-x-intersects-the-graph-of-y-2x-1-at-x-1-2-3-Find-the-value-of-f-0-f-4-

Question Number 174806 by cortano1 last updated on 11/Aug/22 $${Given}\:{f}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${where}\:{a},{b},{c}\:{and}\:{d}\:{are}\:{real}\:{number} \\ $$$${suppose}\:{the}\:{graph}\:{f}\left({x}\right)\:{intersects} \\ $$$${the}\:{graph}\:{of}\:{y}=\mathrm{2}{x}−\mathrm{1}\:{at}\:{x}=\mathrm{1},\mathrm{2},\mathrm{3}. \\ $$$$\:{Find}\:{the}\:{value}\:{of}\:\:{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right). \\ $$ Commented by…

For-which-value-of-x-this-cubic-equation-will-be-0-a-3-16a-3-

Question Number 174800 by AgniMath last updated on 11/Aug/22 $$\mathrm{For}\:\mathrm{which}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{this}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{will} \\ $$$$\mathrm{be}\:\mathrm{0}\:?\:{a}^{\mathrm{3}} \:−\:\mathrm{16}{a}\:−\:\mathrm{3} \\ $$ Answered by MJS_new last updated on 11/Aug/22 $${a}_{\mathrm{1}} =−\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{128}}\right) \\…

Question-174799

Question Number 174799 by Shrinava last updated on 11/Aug/22 Answered by behi834171 last updated on 12/Aug/22 $${cot}\frac{{A}}{\mathrm{2}}=\sqrt{\frac{{p}\left({p}−{a}\right)}{\left({p}−{b}\right)\left({p}−{c}\right)}}\:\:=\frac{\boldsymbol{{S}}}{\left(\boldsymbol{{p}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{p}}−\boldsymbol{{c}}\right)}= \\ $$$$=\frac{\boldsymbol{{p}}\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)\:}{\boldsymbol{{S}}}=\frac{\boldsymbol{{p}}−\boldsymbol{{a}}}{\boldsymbol{{r}}}\:\:\:\:\:{and}\:{so}\:{on}… \\ $$$$\Pi\boldsymbol{{cot}}\frac{\boldsymbol{{A}}}{\mathrm{2}}=\frac{\boldsymbol{{S}}^{\mathrm{2}} }{\boldsymbol{{p}}.\boldsymbol{{r}}^{\mathrm{3}} }=\frac{\boldsymbol{{S}}}{\boldsymbol{{r}}^{\mathrm{2}} } \\…

Simplify-x-y-z-x-1-y-1-z-1-x-1-y-1-z-1-x-y-y-z-z-x-

Question Number 43707 by Tawa1 last updated on 14/Sep/18 $$\mathrm{Simplify}:\:\:\: \\ $$$$\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{x}^{−\mathrm{1}} \:+\:\mathrm{y}^{−\mathrm{1}} \:+\:\mathrm{z}^{−\mathrm{1}} \right)\:=\:\left(\mathrm{x}^{−\mathrm{1}} \:\mathrm{y}^{−\mathrm{1}} \:\mathrm{z}^{−\mathrm{1}} \right)\left(\mathrm{x}\:+\:\mathrm{y}\right)\left(\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{z}\:+\:\mathrm{x}\right) \\ $$ Commented by math1967 last updated…

If-pqr-1-Hence-evaluate-1-1-e-f-1-1-1-f-g-1-1-1-g-e-1-

Question Number 43706 by Tawa1 last updated on 14/Sep/18 $$\mathrm{If}\:\:\mathrm{pqr}\:=\:\mathrm{1} \\ $$$$\mathrm{Hence}\:\mathrm{evaluate}:\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{e}\:+\:\mathrm{f}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{f}\:+\:\mathrm{g}^{−\mathrm{1}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{g}\:+\:\mathrm{e}^{−\mathrm{1}} } \\ $$ Commented by Joel578 last updated on 14/Sep/18 $${p},{q},{r}\:\mathrm{and}\:{e},{f},{g}\:?…

simplify-12-1-5-27-1-5-5-2-

Question Number 43702 by rajesh123456 last updated on 14/Sep/18 $${simplify}\:\:\:\left[\frac{\mathrm{12}^{\mathrm{1}/\mathrm{5}} }{\mathrm{27}^{\mathrm{1}/\mathrm{5}} }\right]^{\mathrm{5}/\mathrm{2}} \\ $$ Answered by Joel578 last updated on 14/Sep/18 $$\left(\frac{\mathrm{12}^{\mathrm{1}/\mathrm{5}} }{\mathrm{27}^{\mathrm{1}/\mathrm{5}} }\right)^{\mathrm{5}/\mathrm{2}} \:=\:\frac{\sqrt{\mathrm{12}}}{\:\sqrt{\mathrm{27}}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{2}}{\mathrm{3}}…

Prove-that-to-each-quadratic-factor-in-the-denominator-of-the-form-ax-2-bx-c-which-does-not-have-linear-factors-there-corresponds-to-a-partial-fraction-of-the-form-Ax-B-ax-2-bx-

Question Number 43705 by Tawa1 last updated on 14/Sep/18 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{to}\:\mathrm{each}\:\mathrm{quadratic}\:\mathrm{factor}\:\mathrm{in}\:\mathrm{the}\:\mathrm{denominator}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\: \\ $$$$\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{bx}\:+\:\mathrm{c}\:\:\:\mathrm{which}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{linear}\:\mathrm{factors},\:\mathrm{there}\:\mathrm{corresponds}\:\mathrm{to} \\ $$$$\mathrm{a}\:\mathrm{partial}\:\mathrm{fraction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:\:\:\:\frac{\mathrm{Ax}\:+\:\mathrm{B}}{\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{bx}\:+\:\mathrm{c}}\:\:\:\mathrm{where}\:\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{constant}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

emATH-5-10-x-5-15-5-15-x-

Question Number 109222 by bemath last updated on 22/Aug/20 $$\:\:\:\:\frac{\ldots\flat{em}\mathcal{ATH}\ldots}{\cong\cong\cong\cong\cong\cong} \\ $$$$\sqrt{\mathrm{5}+\sqrt{\mathrm{10}}}\:=\:{x}.\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{15}}\:}\:+\sqrt{\mathrm{5}−\sqrt{\mathrm{15}}}\:\right) \\ $$$${x}\:=? \\ $$ Answered by bobhans last updated on 22/Aug/20 $$\:\:\:\frac{\_\flat{o}\flat\mathcal{HAN}\varsigma\_}{\triangleright\triangleleft} \\…