Question Number 215322 by efronzo1 last updated on 03/Jan/25 Answered by brown last updated on 03/Jan/25 $$\mathrm{2} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 215350 by hardmath last updated on 03/Jan/25 $$\mathrm{Find}:\:\:\:\mathrm{x}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{2}^{\sqrt{\mathrm{200}}} \:\:\Rightarrow\:\:\mathrm{x}\:=\:? \\ $$ Answered by zetamaths last updated on 03/Jan/25 $$.{is}\:{just}\:{the}\:{lambert}\:{function} \\ $$$${x}^{{x}} =\mathrm{2}^{\sqrt{\mathrm{200}}}…
Question Number 215282 by arkanmathematics63 last updated on 02/Jan/25 $${Show}\:{that}\:{x}=\mathrm{64}\:{and}\:{y}=\mathrm{729}\: \\ $$$$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}=\mathrm{13} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\mathrm{35} \\ $$ Commented by Ghisom last updated on 02/Jan/25 $$\mathrm{to}\:“\mathrm{show}\:\mathrm{that}\:{x}=\mathrm{64}\:\mathrm{and}\:{y}=\mathrm{729}''\:\mathrm{it}'\mathrm{s}\:\mathrm{enough} \\…
Question Number 215248 by sudipyt44 last updated on 01/Jan/25 $$\frac{\mathrm{10}}{\mathrm{7}}\boldsymbol{\div}\frac{\mathrm{9}}{\mathrm{4}}×\frac{\mathrm{21}}{\mathrm{8}} \\ $$ Commented by A5T last updated on 01/Jan/25 $$\left(\mathrm{a}\boldsymbol{\div}\mathrm{b}\right)×\mathrm{c}=\frac{\mathrm{ac}}{\mathrm{b}} \\ $$$$\mathrm{a}\boldsymbol{\div}\left(\mathrm{b}×\mathrm{c}\right)=\frac{\mathrm{a}}{\mathrm{bc}} \\ $$ Answered…
Question Number 215180 by hardmath last updated on 30/Dec/24 $$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{31}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{x}\:\:=\:\:\mathrm{41}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\left(\mathrm{x}\:;\:\mathrm{y}\right)\:=\:? \\ $$ Commented by Ghisom last updated on 31/Dec/24 $$\mathrm{obviously} \\ $$$$\mathrm{5}^{\mathrm{2}} +\mathrm{6}=\mathrm{31}…
Question Number 215137 by hardmath last updated on 29/Dec/24 $$\mathrm{If}\:\:\:\overline {\mathrm{ab}}\:+\:\overline {\mathrm{ba}}\:=\:\mathrm{n}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\:\mathrm{max}\left(\mathrm{a}\centerdot\mathrm{b}\right)\:−\:\mathrm{min}\left(\mathrm{a}\centerdot\mathrm{b}\right)\:=\:? \\ $$ Answered by mahdipoor last updated on 29/Dec/24 $${ab}+{ba}=\mathrm{11}\left({a}+{b}\right)=\mathrm{11}^{\mathrm{2}} ={n}^{\mathrm{2}}…
Question Number 215092 by BaliramKumar last updated on 28/Dec/24 Commented by BaliramKumar last updated on 28/Dec/24 $${I}\:{want}\:{to}\:{find}\:{the}\:{value}\:{of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}} \\ $$ Commented by BaliramKumar last updated on…
Question Number 215052 by Abdullahrussell last updated on 27/Dec/24 Answered by mr W last updated on 27/Dec/24 $${f}\left(\mathrm{1}\right)=\mathrm{1}\:\Rightarrow{f}\left({x}\right)=\left({x}−\mathrm{1}\right){g}\left({x}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\left(\mathrm{2}−\mathrm{1}\right){g}\left(\mathrm{2}\right)+\mathrm{1}=\mathrm{4}\:\Rightarrow{g}\left(\mathrm{2}\right)=\mathrm{3}\:\Rightarrow{g}\left({x}\right)=\left({x}−\mathrm{2}\right){h}\left({x}\right)+\mathrm{3} \\ $$$$\Rightarrow{f}\left({x}\right)=\left({x}−\mathrm{1}\right)\left[\left({x}−\mathrm{2}\right){h}\left({x}\right)+\mathrm{3}\right]+\mathrm{1} \\ $$$${f}\left(\mathrm{3}\right)=\left(\mathrm{3}−\mathrm{1}\right)\left[\left(\mathrm{3}−\mathrm{2}\right){h}\left(\mathrm{3}\right)+\mathrm{3}\right]+\mathrm{1}=\mathrm{3}\:\Rightarrow{h}\left(\mathrm{3}\right)=−\mathrm{2}\:\Rightarrow{h}\left({x}\right)=\left({x}−\mathrm{3}\right){k}\left({x}\right)−\mathrm{2} \\…
Question Number 215072 by hardmath last updated on 27/Dec/24 $$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2000x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{Roots}:\:\:\boldsymbol{\mathrm{a}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{b}} \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2008x}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{Roots}:\:\:\boldsymbol{\mathrm{c}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{d}} \\ $$$$\mathrm{Find}:\:\:\left(\mathrm{a}+\mathrm{c}\right)\left(\mathrm{b}+\mathrm{d}\right)\left(\mathrm{a}−\mathrm{d}\right)\left(\mathrm{b}−\mathrm{c}\right)\:=\:? \\ $$ Commented by TonyCWX08…
Question Number 215005 by Abdullahrussell last updated on 25/Dec/24 $$\:{a},{b},{c},{d}\in{R}\:{such}\:{that}, \\ $$$$\:\left({a}+{b}\right)\left({c}+{d}\right)=\mathrm{2} \\ $$$$\:\left({a}+{c}\right)\left({b}+{d}\right)=\mathrm{3} \\ $$$$\:\left({a}+{d}\right)\left({b}+{c}\right)=\mathrm{4}\: \\ $$$$\:{find}:\:\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)_{{minimum}.} \\ $$ Answered…