Menu Close

Category: Algebra

Question-211917

Question Number 211917 by Spillover last updated on 24/Sep/24 Answered by BHOOPENDRA last updated on 24/Sep/24 UseLHopitalsRule$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{mn}\left(\mathrm{1}+{nx}\right)^{{m}−\mathrm{1}} −{mn}\left(\mathrm{1}+{mx}\right)^{{n}−\mathrm{1}} }{\left(\mathrm{1}+{mx}\right)^{\frac{\mathrm{1}}{{m}}−\mathrm{1}} −\left(\mathrm{1}+{nx}\right)^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} } \

Question-211919

Question Number 211919 by Spillover last updated on 24/Sep/24 Answered by Frix last updated on 24/Sep/24 x1+32+44+58+616=x5$$\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{k}+\mathrm{2}}{\mathrm{2}^{{k}} }\:=\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}^{{k}}…

Question-211885

Question Number 211885 by Spillover last updated on 23/Sep/24 Answered by Frix last updated on 23/Sep/24 x2(xsinx+cosx)2dx=yxsinx+cosx+Cddx[yxsinx+cosx]=x2(xsinx+cosx)2$$\frac{{y}'\left({x}\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\right)−{yx}\mathrm{cos}\:{x}}{\left({x}\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\right)^{\mathrm{2}}…