Menu Close

Category: Algebra

2-tg-3-x-2-tg-2-x-6-tg-x-3-0-2-Sum-of-roots-

Question Number 207724 by hardmath last updated on 24/May/24 $$\mathrm{2}\:\mathrm{tg}^{\mathrm{3}} \:\boldsymbol{\mathrm{x}}\:−\:\mathrm{2}\:\mathrm{tg}^{\mathrm{2}} \:\boldsymbol{\mathrm{x}}\:+\:\mathrm{6}\:\mathrm{tg}\:\boldsymbol{\mathrm{x}}\:=\:\mathrm{3}\:\:\:,\:\:\:\left[\mathrm{0}\:;\:\mathrm{2}\boldsymbol{\pi}\right] \\ $$$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{roots}\:=\:? \\ $$ Answered by Frix last updated on 24/May/24 $$\mathrm{tan}^{\mathrm{3}} \:{x}\:−\mathrm{tan}^{\mathrm{2}}…

lg-2-10x-lg-10x-1-6-lg-x-find-x-

Question Number 207717 by hardmath last updated on 24/May/24 $$\mathrm{lg}^{\mathrm{2}} \:\left(\mathrm{10x}\right)\:−\:\mathrm{lg}\:\mathrm{10x}\:+\:\mathrm{1}\:=\:\mathrm{6}\:−\:\mathrm{lg}\:\mathrm{x} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by TonyCWX08 last updated on 24/May/24 $$\left(\mathrm{1}+{lg}\left({x}\right)\right)^{\mathrm{2}} −\left(\mathrm{1}+{lg}\left({x}\right)\right)+{lg}\left({x}\right)+\mathrm{1}−\mathrm{6}=\mathrm{0} \\…

x-3-x-2-9-find-x-

Question Number 207718 by hardmath last updated on 24/May/24 $$\mid\mathrm{x}−\mathrm{3}\mid\:+\:\mid\mathrm{x}\:+\mathrm{2}\mid\:=\:\mathrm{9} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by TonyCWX08 last updated on 24/May/24 $${There}\:{are}\:\mathrm{4}\:{possible}\:{cases}. \\ $$$${x}−\mathrm{3}+{x}+\mathrm{2}=\mathrm{9} \\…

4-2x-1-27-3x-1-125-5x-1-144-4x-1-Find-x-

Question Number 207699 by hardmath last updated on 23/May/24 $$\frac{\mathrm{4}}{\mathrm{2x}−\mathrm{1}}\:\:+\:\:\frac{\mathrm{27}}{\mathrm{3x}−\mathrm{1}}\:\:+\:\:\frac{\mathrm{125}}{\mathrm{5x}−\mathrm{1}}\:\:=\:\:\frac{\mathrm{144}}{\mathrm{4x}−\mathrm{1}} \\ $$$$\mathrm{Find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 23/May/24 $$\frac{\mathrm{4}}{\mathrm{2x}−\mathrm{1}}\:+\:\frac{\mathrm{27}}{\mathrm{3x}−\mathrm{1}}\:+\:\frac{\mathrm{125}}{\mathrm{5x}−\mathrm{1}}\:=\:\frac{\mathrm{144}}{\mathrm{4x}−\mathrm{1}} \\ $$$$\frac{\mathrm{4}}{\mathrm{2x}−\mathrm{1}}+\:\frac{\mathrm{125}}{\mathrm{5x}−\mathrm{1}}=\:\frac{\mathrm{144}}{\mathrm{4x}−\mathrm{1}}−\frac{\mathrm{27}}{\mathrm{3x}−\mathrm{1}} \\…

Given-x-1-x-3-x-2023-25-x-2-x-4-x-2022-x-1-2-x-3-2-x-2023-2-125-x-2-2-x-4-2-x-2022-2-2-x-i-1-i-1-2-3-2023-x-i-integer-numbe

Question Number 207663 by efronzo1 last updated on 24/May/24 $$\:\:\mathrm{Given}\: \\ $$$$\:\:\:\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{3}} +…+\mathrm{x}_{\mathrm{2023}} \:=\:\mathrm{25}−\left(\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{4}} +…+\mathrm{x}_{\mathrm{2022}} \right) \\ $$$$\:\:\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}\:} +\:\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} +…+\mathrm{x}_{\mathrm{2023}} ^{\mathrm{2}}…

P-1-1-3-1-5-1-7-1-2023-Q-1-1-2023-1-3-2021-1-5-2019-1-2023-1-P-Q-

Question Number 207661 by efronzo1 last updated on 22/May/24 $$\:\mathrm{P}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}+…+\frac{\mathrm{1}}{\mathrm{2023}} \\ $$$$\:\mathrm{Q}=\:\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2023}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{2021}}+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{2019}}+…+\frac{\mathrm{1}}{\mathrm{2023}×\mathrm{1}} \\ $$$$\:\:\frac{\mathrm{P}}{\mathrm{Q}}=? \\ $$ Answered by Frix last updated on 22/May/24 $${P}\left({m}\right)=\underset{{k}=\mathrm{1}} {\overset{\frac{{m}+\mathrm{1}}{\mathrm{2}}}…

Question-207673

Question Number 207673 by efronzo1 last updated on 22/May/24 $$\:\:\:\:\underline{ \:} \\ $$$$ \\ $$ Answered by A5T last updated on 22/May/24 $${abcde}={a}+{b}+{c}+{d}+{e}\leqslant\mathrm{5}{e}\Rightarrow{abcd}\leqslant\mathrm{5} \\ $$$${abcd}=\mathrm{1}\Rightarrow{a}={b}={c}={d}=\mathrm{1}…

If-p-q-r-0-and-A-p-2-q-2-r-2-2-pq-2-qr-2-rp-2-B-q-2-pr-p-2-q-2-r-2-Find-A-2-4B-

Question Number 207664 by efronzo1 last updated on 22/May/24 $$\:\:\:\:\mathrm{If}\:\mathrm{p}+\mathrm{q}+\mathrm{r}\:=\:\mathrm{0}\:\mathrm{and}\: \\ $$$$\:\:\:\:\mathrm{A}=\frac{\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{pq}\right)^{\mathrm{2}} +\left(\mathrm{qr}\right)^{\mathrm{2}} +\left(\mathrm{rp}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\:\mathrm{B}=\:\frac{\mathrm{q}^{\mathrm{2}} −\mathrm{pr}}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }\:.…