Menu Close

Category: Algebra

Find-61-3-24-3-61-3-37-3-

Question Number 208469 by hardmath last updated on 16/Jun/24 $$\mathrm{Find}:\:\:\:\:\:\frac{\mathrm{61}^{\mathrm{3}} \:\:+\:\:\mathrm{24}^{\mathrm{3}} }{\mathrm{61}^{\mathrm{3}} \:\:+\:\:\mathrm{37}^{\mathrm{3}} }\:\:=\:\:? \\ $$ Answered by Frix last updated on 16/Jun/24 $${a}=\mathrm{61};\:{b}=\mathrm{24};\:{a}−{b}=\mathrm{37} \\…

If-f-x-2a-1-x-1-x-a-and-f-x-f-1-x-Find-a-2-3-

Question Number 208453 by hardmath last updated on 16/Jun/24 $$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\left(\mathrm{2a}\:+\:\mathrm{1}\right)\centerdot\mathrm{x}\:+\:\mathrm{1}}{\mathrm{x}\:−\:\mathrm{a}}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\mathrm{Find}:\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{3}\:=\:? \\ $$ Answered by efronzo1 last updated on 16/Jun/24 $$\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{ax}+\mathrm{1}}{\mathrm{x}−\left(\mathrm{2a}+\mathrm{1}\right)}\:=\:\frac{\left(\mathrm{2a}+\mathrm{1}\right)\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{a}}…

Find-0-2-1-x-dx-

Question Number 208409 by hardmath last updated on 15/Jun/24 $$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\mid\mathrm{1}\:−\:\mathrm{x}\mid\:\mathrm{dx}\:=\:? \\ $$ Answered by mr W last updated on 15/Jun/24 $$=\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \left({x}−\mathrm{1}\right){dx}…

g-x-lnx-2-f-x-x-25-1-3-Find-lim-x-e-f-g-x-

Question Number 208381 by hardmath last updated on 14/Jun/24 $$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{lnx}^{\mathrm{2}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:+\:\mathrm{25}} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\boldsymbol{\mathrm{e}}} {\mathrm{lim}}\:\left(\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}\right)\right)\:=\:?\right. \\ $$ Answered by A5T last updated on 14/Jun/24 $${f}\left({g}\left({x}\right)\right)=\sqrt[{\mathrm{3}}]{{ln}\left({x}^{\mathrm{2}}…

if-fof-x-f-x-x-and-f-1-1-find-fofofofofofofofofof-1-

Question Number 208370 by lmcp1203 last updated on 14/Jun/24 $${if}\:\:\:\left({fof}\right)\left({x}\right)={f}\left({x}\right)+{x}\:\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{1}\:\:\: \\ $$$${find}\:\:{fofofofofofofofofof}\left(\mathrm{1}\right) \\ $$ Commented by A5T last updated on 14/Jun/24 $${f}\left({f}\left({x}\right)\right)={f}\left({x}\right)+{x}\Rightarrow\:{f}\left({f}\left(\mathrm{1}\right)\right)={f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right)+\mathrm{1}\Rightarrow\mathrm{1}\overset{?} {=}\mathrm{0}…

P-x-is-polynomial-P-x-x-4-2ax-3-bx-5-x-1-2-Find-b-

Question Number 208362 by hardmath last updated on 13/Jun/24 $$\mathrm{P}\left(\mathrm{x}\right)\:\:\mathrm{is}\:\mathrm{polynomial} \\ $$$$\mathrm{P}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{2ax}^{\mathrm{3}} \:−\:\mathrm{bx}\:−\:\mathrm{5}}{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{b}}\:=\:? \\ $$ Answered by mr W last updated…

a-b-c-N-x-4-2a-5-6-b-9-9-c-1-find-min-x-a-b-c-

Question Number 208342 by hardmath last updated on 13/Jun/24 $$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{N} \\ $$$$\mathrm{x}\:=\:\mathrm{4}\left(\mathrm{2a}+\mathrm{5}\right)\:=\:\mathrm{6}\left(\mathrm{b}+\mathrm{9}\right)\:=\:\mathrm{9}\left(\mathrm{c}−\mathrm{1}\right) \\ $$$$\mathrm{find}:\:\:\:\boldsymbol{\mathrm{min}}\left(\mathrm{x}+\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\:=\:? \\ $$ Answered by A5T last updated on 13/Jun/24 $${c}=\frac{\mathrm{6}\left({b}+\mathrm{9}\right)}{\mathrm{9}}+\mathrm{1}=\frac{\mathrm{2}{b}}{\mathrm{3}}+\mathrm{7}\Rightarrow{b}=\mathrm{3}{k} \\…

Question-208332

Question Number 208332 by essaad last updated on 12/Jun/24 Answered by Frix last updated on 12/Jun/24 $$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\:\left({k}+{a}\right)\:={a}\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right)…\left({a}+{n}\right)=\frac{\left({a}+{n}\right)!}{\left({a}−\mathrm{1}\right)!} \\ $$$$\Rightarrow \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\:\frac{{k}^{\mathrm{2}}…