Menu Close

Category: Algebra

Find-4-cos-2-40-1-cos-20-

Question Number 207641 by hardmath last updated on 21/May/24 $$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}\:−\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}}\:\:=\:\:? \\ $$ Commented by Frix last updated on 22/May/24 $$\mathrm{4}−\mathrm{2}\sqrt{\mathrm{7}}\mathrm{cos}\:\frac{\pi+\mathrm{2sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{6}} \\ $$ Answered…

Question-207639

Question Number 207639 by hardmath last updated on 21/May/24 Commented by Berbere last updated on 21/May/24 $${false}\:{not}\:{true}\: \\ $$$$\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}\sim\frac{\mathrm{4}^{{n}} }{\:\sqrt{\pi{n}}} \\ $$$$\frac{\mathrm{2}^{−\mathrm{2}\left({n}−\mathrm{1}\right)} \left({n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right)}{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{4}\right)}\begin{pmatrix}{{n}}\\{\mathrm{2}{n}}\end{pmatrix}^{\mathrm{2}} \sim\frac{\mathrm{4}^{{n}} }{\pi{n}}\:{diverge}…

Question-207638

Question Number 207638 by hardmath last updated on 21/May/24 Commented by TonyCWX08 last updated on 22/May/24 $${arcsin}\left({sin}\mathrm{5}\right)=\mathrm{5} \\ $$$${arccis}\left({cos}\mathrm{6}\right)=\mathrm{6} \\ $$$${arctan}\left({tan}\mathrm{2}\right)=\mathrm{2} \\ $$$$\mathrm{5}+\mathrm{6}+\mathrm{2}=\mathrm{13} \\ $$…

2-sinx-cosx-1-

Question Number 207588 by hardmath last updated on 19/May/24 $$\sqrt{\mathrm{2}}\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:\:+\:\:\mathrm{cos}\boldsymbol{\mathrm{x}}\:\:\geqslant\:\:\mathrm{1} \\ $$ Answered by mr W last updated on 19/May/24 $$\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\mathrm{cos}\:{x}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{sin}\:\alpha\:\:\mathrm{sin}\:{x}+\mathrm{cos}\:\alpha\:\mathrm{cos}\:{x}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${with}\:\alpha=\mathrm{cos}^{−\mathrm{1}}…

4-sin-2-x-sin-2x-2-find-x-

Question Number 207561 by hardmath last updated on 18/May/24 $$\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\boldsymbol{\mathrm{x}}\:\:+\:\:\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{2} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by mathzup last updated on 18/May/24 $${e}\Leftrightarrow\mathrm{4}\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\:+{sin}\left(\mathrm{2}{x}\right)=\mathrm{2}\:\Leftrightarrow \\ $$$$\mathrm{2}−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+{sin}\left(\mathrm{2}{x}\right)=\mathrm{2}\:\Leftrightarrow…

x-2-lg-x-3-0-

Question Number 207558 by hardmath last updated on 18/May/24 $$\left(\mathrm{x}\:−\:\mathrm{2}\right)\:\mathrm{lg}\:\frac{\mathrm{x}}{\mathrm{3}}\:\:\geqslant\:\:\mathrm{0} \\ $$ Answered by mr W last updated on 19/May/24 $${x}−\mathrm{2}\geqslant\mathrm{0}\:\wedge\:\frac{{x}}{\mathrm{3}}\geqslant\mathrm{1}\:\Rightarrow{x}\geqslant\mathrm{3}\:\checkmark \\ $$$${or} \\ $$$${x}−\mathrm{2}\leqslant\mathrm{0}\:\wedge\:\mathrm{0}<\frac{{x}}{\mathrm{3}}\leqslant\mathrm{1}\:\Rightarrow\mathrm{0}<{x}\leqslant\mathrm{2}\:\checkmark…