Menu Close

Category: Algebra

The-unit-digit-of-a-two-degit-number-is-1-less-than-the-tens-degit-if-the-number-is-increased-by-8-and-then-divided-by-the-sum-of-the-digits-the-result-is-8-Find-the-number-

Question Number 168073 by pete last updated on 02/Apr/22 $$\mathrm{The}\:\mathrm{unit}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{a}\:\mathrm{two}\:\mathrm{degit}\:\mathrm{number}\:\mathrm{is}\:\mathrm{1}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{the}\:\mathrm{tens}\:\mathrm{degit}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{increased} \\ $$$$\mathrm{by}\:\mathrm{8}\:\mathrm{and}\:\mathrm{then}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{digits},\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:\mathrm{8}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}. \\ $$ Answered by som(math1967) last updated on 02/Apr/22…

Simplify-1-x-x-1-x-x-

Question Number 168054 by Mastermind last updated on 01/Apr/22 $${Simplify}\:\:\frac{\sqrt{\mathrm{1}+{x}}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{{x}}} \\ $$ Commented by MJS_new last updated on 01/Apr/22 $$\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{want}?\:\mathrm{what}\:\mathrm{is}\:“\mathrm{simple}''? \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{do}\:\mathrm{this}: \\ $$$$\frac{\sqrt{\mathrm{1}+{x}}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{{x}}}=\frac{\sqrt{\mathrm{1}+{x}}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{{x}}}×\frac{\sqrt{\mathrm{1}−{x}}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}−{x}}−\sqrt{{x}}}= \\…

Solve-the-equation-7x-2-7-7x-2-3-y-2-18-y-2-17-3z-2-26-3z-2-1-16-

Question Number 168043 by Sigunur last updated on 01/Apr/22 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\frac{\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{7}}{\:\sqrt{\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{3}}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{18}}{\:\sqrt{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{17}}}\:+\:\frac{\mathrm{3z}^{\mathrm{2}} \:+\:\mathrm{26}}{\:\sqrt{\mathrm{3z}^{\mathrm{2}} \:+\:\mathrm{1}}}\:=\:\mathrm{16} \\ $$ Commented by MJS_new last updated…

x-3-bx-c-0-b-c-gt-0-b-3-3-gt-c-2-2-To-find-the-three-real-roots-without-the-use-of-trigonometric-solution-to-cubic-polynomial-

Question Number 102490 by ajfour last updated on 09/Jul/20 $${x}^{\mathrm{3}} −{bx}−{c}=\mathrm{0}\:\:\:\:\:;\:\:{b},\:{c}\:>\mathrm{0}\:;\:\:\left(\frac{{b}}{\mathrm{3}}\right)^{\mathrm{3}} >\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${To}\:{find}\:{the}\:{three}\:{real}\:{roots}\:{without} \\ $$$${the}\:{use}\:{of}\:{trigonometric}\:{solution} \\ $$$${to}\:{cubic}\:{polynomial}… \\ $$ Answered by ajfour last updated…

let-f-x-e-x-2-1-prove-that-f-n-x-p-n-x-e-x-2-with-p-n-is-a-polynom-2-find-a-relation-of-recurrence-between-the-p-n-3-calculate-p-1-p-2-p-3-p-4-

Question Number 36926 by maxmathsup by imad last updated on 07/Jun/18 $${let}\:{f}\left({x}\right)\:=\:{e}^{−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}^{\left({n}\right)} \left({x}\right)={p}_{{n}} \left({x}\right){e}^{−{x}^{\mathrm{2}} } \:\:{with}\:{p}_{{n}} \:{is}\:{a}\:{polynom} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{relation}\:{of}\:{recurrence}\:{between}\:{the}\:{p}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{p}_{\mathrm{1}} ,{p}_{\mathrm{2}}…

If-af-x-bf-1-x-1-x-where-a-b-and-x-0-show-that-f-x-1-a-2-b-2-a-x-bx-

Question Number 167985 by peter frank last updated on 31/Mar/22 $$\mathrm{If}\:\:\mathrm{af}\left(\mathrm{x}\right)+\mathrm{bf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{where}\: \\ $$$$\mathrm{a}\neq\mathrm{b}\:\mathrm{and}\:\:\mathrm{x}\neq\mathrm{0}\:\mathrm{show}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\right)\left(\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{x}}}−\boldsymbol{\mathrm{bx}}\right) \\ $$ Answered by som(math1967) last updated on…

p-is-a-polynome-having-nroots-simples-x-i-1-x-i-n-with-x-i-2-1-calculste-k-1-n-1-1-x-k-

Question Number 36911 by prof Abdo imad last updated on 07/Jun/18 $${p}\:{is}\:{a}\:{polynome}\:{having}\:{nroots}\:{simples} \\ $$$${x}_{{i}} \:\left(\mathrm{1}\leqslant{x}_{{i}} \leqslant{n}\:\right)\:{with}\:{x}_{{i}} ^{\mathrm{2}} \:\neq\mathrm{1}\:\:{calculste} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{k}} }\:. \\ $$…