Menu Close

Category: Algebra

Question-163437

Question Number 163437 by cortano1 last updated on 07/Jan/22 Commented by mr W last updated on 07/Jan/22 $${m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{\mathrm{13}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{53}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{103}}\right)^{\mathrm{3}} −\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}} \\…

Question-163430

Question Number 163430 by amin96 last updated on 06/Jan/22 Answered by qaz last updated on 07/Jan/22 $$\frac{\mathrm{A}}{\mathrm{B}}=\frac{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)\left(\mathrm{2n}\right)}}{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{999}+\mathrm{n}\right)\left(\mathrm{1999}−\mathrm{n}\right)}} \\ $$$$=\frac{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{999}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2n}}\right)=\mathrm{H}_{\mathrm{1998}}…

decompose-F-x-1-1-x-2-1-x-2-inside-R-x-

Question Number 32333 by abdo imad last updated on 23/Mar/18 $${decompose}\:{F}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\:{inside}\:{R}\left({x}\right). \\ $$ Commented by abdo imad last updated on 01/Apr/18 $${F}\left({x}\right)=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}\:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}}…

let-p-n-x-x-1-6n-1-x-6n-1-1-with-n-integr-prove-that-n-x-2-x-1-2-divide-p-n-x-

Question Number 32330 by abdo imad last updated on 23/Mar/18 $${let}\:{p}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}{n}+\mathrm{1}} \:−{x}^{\mathrm{6}{n}+\mathrm{1}} \:−\mathrm{1}\:{with}\:{n}\:{integr} \\ $$$${prove}\:{that}\:\forall{n}\:\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \:{divide}\:{p}_{{n}} \left({x}\right). \\ $$ Commented by abdo imad…