Question Number 163288 by HongKing last updated on 05/Jan/22 Answered by Ar Brandon last updated on 05/Jan/22 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} {x}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sec}^{\mathrm{2}} {x}}{\mathrm{sec}^{\mathrm{2}}…
Question Number 163285 by mnjuly1970 last updated on 05/Jan/22 $$ \\ $$$$\:\:\:\:#\:\mathrm{Q}{uestion}\:# \\ $$$$\:\:\:\:\:{suppose}\:{that}\:\:{x}_{\mathrm{1}} \:,\:\:{x}_{\:\mathrm{2}} \:\:{are}\:{two}\:{distinct} \\ $$$$\:\:\:\:{roots}\:{for}\:\:\:{ax}^{\:\mathrm{2}} +\:{bx}\:+{c}\:=\:\mathrm{0}\:\:{on}\:\left(\:\mathrm{0},\:\mathrm{1}\:\right). \\ $$$$\:\:\:\:\:{find}\:\:{the}\:{minimum}\:{value}\:{of}\:\:''\:{a}\:''\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{\:{min}}…
Question Number 32208 by rahul 19 last updated on 21/Mar/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 32203 by rahul 19 last updated on 21/Mar/18 $$\boldsymbol{{N}}{umber}\:{of}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$${z}^{\mathrm{3}} +\frac{\left[\mathrm{3}\left(\overset{−} {{z}}\right)^{\mathrm{2}} \right]}{\mid{z}\mid}=\mathrm{0}\:{where}\:{z}\:{is}\:{a}\:{complex}\:{no}. \\ $$ Commented by rahul 19 last updated on…
Question Number 32184 by rahul 19 last updated on 21/Mar/18 $$\boldsymbol{{I}}{f}\:{one}\:{vertex}\:{of}\:{the}\:{triangle}\:{having} \\ $$$${maximum}\:{area}\:{that}\:{can}\:{be}\:{inscribed} \\ $$$${in}\:{the}\:{circle}\:\mid\boldsymbol{{z}}−\boldsymbol{{i}}\mid=\mathrm{5}\:{is}\:\mathrm{3}−\mathrm{3}\boldsymbol{{i}},\:{then} \\ $$$${find}\:{other}\:{vertices}\:{of}\:{triangle}. \\ $$ Answered by MJS last updated on…
Question Number 32181 by rahul 19 last updated on 21/Mar/18 $$\boldsymbol{{I}}{ntercept}\:{made}\:{by}\:{the}\:{circle}\: \\ $$$$\boldsymbol{{z}}\overset{−} {\boldsymbol{{z}}}+\overset{−} {\boldsymbol{{a}z}}+\boldsymbol{{a}}\overset{−} {\boldsymbol{{z}}}+\boldsymbol{{r}}=\mathrm{0}\:\boldsymbol{{o}}{n}\:{the}\:{real}\:{axis}\:{on} \\ $$$${complex}\:{plane}\:{is}\::− \\ $$ Commented by rahul 19 last…
Question Number 32160 by rahul 19 last updated on 20/Mar/18 $$\boldsymbol{{I}}{f}\:{z}={cos}\theta+{isin}\theta\:{is}\:{a}\:{root}\:{of}\:{equation} \\ $$$${a}_{\mathrm{0}} {z}^{{n}} +{a}_{\mathrm{1}} {z}^{{n}−\mathrm{1}} +{a}_{\mathrm{2}} {z}^{{n}−\mathrm{2}} +…..+{a}_{{n}−\mathrm{1}} {z}+{a}_{{n}} =\mathrm{0} \\ $$$${then}\:{prove}\:{that}: \\ $$$$\left.{i}\right)\:{a}_{\mathrm{0}}…
Question Number 32159 by rahul 19 last updated on 20/Mar/18 $$\boldsymbol{{E}}{xpress}\:{the}\:{following}\:{in}\:{a}+{ib}\:{form}: \\ $$$$\frac{\left(\mathrm{cos}\:{x}+{i}\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{y}+{i}\mathrm{sin}\:{y}\right)}{\left({cosa}+{i}\mathrm{sin}\:{a}\right)\left({cosb}+{isinb}\right)}. \\ $$ Commented by abdo imad last updated on 20/Mar/18 $${E}\:=\frac{{e}^{{ix}} \:{e}^{{iy}}…
Question Number 97694 by mr W last updated on 09/Jun/20 Commented by Rio Michael last updated on 09/Jun/20 $$\mathrm{please}\:\mathrm{sir}\:\mathrm{translate}\:\mathrm{the}\:\mathrm{last}\:\mathrm{part}\:\mathrm{for}\:\mathrm{us} \\ $$$$\mathrm{who}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{what}\:−−−−\mathrm{means} \\ $$ Commented by…
Question Number 163222 by cortano1 last updated on 05/Jan/22 $$\:\:\:\sqrt{\frac{\sqrt{{x}+\mathrm{4}}\:+\mathrm{2}}{\mathrm{2}−\sqrt{{x}+\mathrm{4}}}}\:\leqslant\:{x}−\mathrm{4}\: \\ $$ Answered by blackmamba last updated on 05/Jan/22 $$\:{no}\:{solution}\:{for}\:{x}\in\mathbb{R} \\ $$$$\left(\mathrm{1}\right)\:{x}−\mathrm{4}>\mathrm{0}\Rightarrow{x}>\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:\frac{\sqrt{{x}+\mathrm{4}}+\mathrm{2}}{\mathrm{2}−\sqrt{{x}+\mathrm{4}}}\:\geqslant\mathrm{0}\:\:;\:\sqrt{{x}+\mathrm{4}}\:=\:{t} \\…