Question Number 36352 by prof Abdo imad last updated on 01/Jun/18 $${let}\:{p}\left({x}\right)\:={x}^{{n}} \:−{e}^{{in}\alpha} \:\:\:\:{with}\:{n}\:{integr}\:{and}\:\alpha\:{fromR} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right]\:. \\ $$ Commented by math khazana by…
Question Number 36344 by Tuhin Bose last updated on 31/May/18 Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18 Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18 Commented…
Question Number 101871 by bemath last updated on 05/Jul/20 $${if}\:{a}_{\mathrm{1}} =\:−\mathrm{4}\:,\:{a}_{\mathrm{2}} =−\mathrm{1}\:{and}\: \\ $$$${a}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} +{a}_{{n}+\mathrm{3}\:} .\:{find}\: \\ $$$${a}_{\mathrm{4}} −{a}_{\mathrm{1}} ? \\ $$ Answered by…
Question Number 167393 by DrHZ last updated on 15/Mar/22 Answered by mindispower last updated on 15/Mar/22 $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\left(\mathrm{1}+{e}^{{ix}} +{e}^{−{ix}} \right)^{{n}} {e}^{{inx}} }{\mathrm{3}+{e}^{{ix}} +{e}^{−{ix}} }{dx}={I}_{{n}}…
Question Number 167374 by mathlove last updated on 14/Mar/22 Answered by nurtani last updated on 14/Mar/22 $${P}=\left(\mathrm{7}+\mathrm{5}\right)\left(\mathrm{7}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \right)\left(\mathrm{7}^{\mathrm{4}} +\mathrm{5}^{\mathrm{4}} \right)…..\left(\mathrm{7}^{\mathrm{64}} +\mathrm{5}^{\mathrm{64}} \right) \\ $$$$\Leftrightarrow\:{P}\:=\:\frac{\left(\mathrm{7}−\mathrm{5}\right)\left(\mathrm{7}+\mathrm{5}\right)\left(\mathrm{7}^{\mathrm{2}}…
Question Number 167367 by mnjuly1970 last updated on 14/Mar/22 Commented by mr W last updated on 15/Mar/22 $${for}\:{a}=\mathrm{2}\:{there}\:{is}\:{no}\:{solution}.\:{for}\:{any} \\ $$$${other}\:{values}\:{of}\:{a}>\mathrm{1}\:{there}\:{is}\:{always} \\ $$$${solution},\:{i}\:{think}. \\ $$ Answered…
Question Number 101803 by dw last updated on 04/Jul/20 $$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{{x}} +\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{{x}} =\left(\sqrt{\mathrm{6}}\right)^{{x}} \\ $$ Commented by Dwaipayan Shikari last updated on 04/Jul/20 $${x}=\mathrm{2} \\ $$…
Question Number 167332 by Amazigh last updated on 13/Mar/22 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{{k}} \\ $$ Answered by LEKOUMA last updated on 14/Mar/22 $${S}_{{n}} =\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\underset{{k}=\mathrm{1}}…
Question Number 101800 by Quvonchbek last updated on 04/Jul/20 Commented by mr W last updated on 05/Jul/20 $${very}\:{interesting}!\:{thanks}\:{sir}! \\ $$ Commented by mr W last…
Question Number 36259 by behi83417@gmail.com last updated on 30/May/18 Answered by ajfour last updated on 30/May/18 $${let}\:\:\:\:{a}+{b}={c}+{d}={s}\:\:\:\:\:\:\:\:\:\:\:…\:\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{cd}\left({ab}−\mathrm{1}\right)={ab}\:\:\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{ad}+{bc}}{{bd}}=\frac{{a}+{c}}{{b}+{d}}\:\:\:\:\:\:\:\:\:\:\:\:\:….\left({iii}\right) \\ $$$$\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}}=\frac{{c}^{\mathrm{2}}…