Menu Close

Category: Algebra

solve-2-2y-1-1-3-y-3-1-

Question Number 96650 by bobhans last updated on 03/Jun/20 $$\mathrm{solve}\:\mathrm{2}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2y}−\mathrm{1}}\:=\:\mathrm{y}^{\mathrm{3}} +\mathrm{1} \\ $$ Answered by john santu last updated on 03/Jun/20 $$\sqrt[{\mathrm{3}\:\:}]{\mathrm{2y}−\mathrm{1}}\:=\:\frac{\mathrm{y}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{f}^{−\mathrm{1}}…

Solve-the-system-of-equations-x-4-2x-y-y-4-x-2-y-2-3-3-

Question Number 162181 by bobhans last updated on 27/Dec/21 $$\:\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\: \\ $$$$\:\:\:\:\:\left.\begin{matrix}{\mathrm{x}^{\mathrm{4}} −\mathrm{2x}+\mathrm{y}=\mathrm{y}^{\mathrm{4}} }\\{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{3}} \:=\:\mathrm{3}}\end{matrix}\right\}\: \\ $$ Commented by benhamimed last updated on…

If-the-ratio-of-the-roots-of-equation-ax-2-2bx-c-0-is-same-as-the-ratio-of-the-roots-of-px-2-2qx-r-0-where-a-b-c-p-r-are-non-zero-real-numbers-Then-the-value-of-b-2-q-2-p-a-r-c-is-

Question Number 162165 by cortano last updated on 27/Dec/21 $$\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}=\mathrm{0}\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{px}^{\mathrm{2}} +\mathrm{2}{qx}+{r}=\mathrm{0}\:\mathrm{where} \\ $$$$\:{a},{b},{c},{p}\:,{r}\:\mathrm{are}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\frac{{b}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\right)\left(\frac{{p}}{{a}}\right)\left(\frac{{r}}{{c}}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\: \\…

let-x-y-N-2-x-y-n-n-N-find-card-2-let-A-x-y-N-2-x-2y-n-find-card-A-

Question Number 31047 by abdo imad last updated on 02/Mar/18 $${let}\:\Delta=\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} \:/{x}+{y}={n}\:,\:{n}\in{N}\right\}\:{find}\:{card}\Delta \\ $$$$\left.\mathrm{2}\right)\:{let}\:{A}=\:\left\{\left({x},{y}\right)\in{N}^{\mathrm{2}} /\:{x}+\mathrm{2}{y}={n}\right\}\:{find}\:{card}\:{A}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com