Menu Close

Category: Algebra

Solve-this-differential-equation-a-L-a-b-L-b-L-where-L-0-a-a-2-sin-2-t-b-2-cos-2-t-dt-

Question Number 161820 by HongKing last updated on 22/Dec/21 $$\mathrm{Solve}\:\mathrm{this}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$${a}\:\frac{\partial{L}\left(\alpha\right)}{\partial{a}}\:+\:{b}\:\frac{\partial{L}\left(\alpha\right)}{\partial{b}}\:=\:{L}\left(\alpha\right) \\ $$$$\mathrm{where}:\:{L}\left(\alpha\right)\:=\:\underset{\:\mathrm{0}} {\overset{\:\boldsymbol{{a}}} {\int}}\sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)\:+\:{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({t}\right)}\:{dt} \\ $$ Answered by aleks041103…

Find-lim-n-k-1-n-i-1-k-i-1-4-1-

Question Number 161822 by HongKing last updated on 22/Dec/21 $$\mathrm{Find}: \\ $$$$\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\left[\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{k}}} {\sum}}\left(\mathrm{i}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right)\right]^{\:-\mathrm{1}} =\:? \\ $$ Answered by qaz last updated…

Question-161817

Question Number 161817 by HongKing last updated on 22/Dec/21 Answered by aleks041103 last updated on 23/Dec/21 $${f}\left({x}\right)=\left({e}^{−\mathrm{1}} \circ{g}\circ{e}\right)\left({x}\right) \\ $$$${e}\left({x}\right)={x}^{\mathrm{2021}} \\ $$$${g}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$${e}^{−\mathrm{1}} \left({x}\right)={x}^{\mathrm{1}/\mathrm{2021}}…

Show-that-0-1-1-x-2-1-x-2-dx-pi-4-1-4-3-4-4-3-4-1-4-where-Gamma-function-

Question Number 161818 by HongKing last updated on 22/Dec/21 $$\mathrm{Show}\:\mathrm{that}: \\ $$$$\Phi\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\sqrt{\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{2}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{4}}\:\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\:-\:\mathrm{4}\:\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\right) \\ $$$$\mathrm{where}:\:\Gamma-\mathrm{Gamma}\:\mathrm{function} \\ $$ Answered by Lordose last updated…

prove-that-p-N-it-exist-one-polynomial-Q-2p-sin-2p-1-sin-2p-1-Q-2p-cotan-and-degQ-2p-2p-2-prove-that-k-1-p-tan-kpi-2p-1-2p-1-

Question Number 30742 by abdo imad last updated on 25/Feb/18 $${prove}\:{that}\:\forall{p}\:\in{N}\:\:{it}\:{exist}\:{one}\:{polynomial}\:{Q}_{\mathrm{2}{p}} \:/ \\ $$$${sin}\left(\mathrm{2}{p}+\mathrm{1}\right)\theta={sin}^{\mathrm{2}{p}+\mathrm{1}} \theta\:{Q}_{\mathrm{2}{p}} \:\left({cotan}\theta\right)\:{and}\:{degQ}_{\mathrm{2}{p}} =\mathrm{2}{p} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{tan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right)=\sqrt{\mathrm{2}{p}+\mathrm{1}}\:. \\ $$$$ \\ $$…