Question Number 30456 by daffa123 last updated on 22/Feb/18 $${proof}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} }{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{{b}^{\mathrm{2}} }{\left({b}−{c}\right)\left({b}−{a}\right)}+\frac{{c}^{\mathrm{2}} }{\left({c}−{a}\right)\left({c}−{b}\right)}=\:{a}+{b}+{c} \\ $$ Answered by Rasheed.Sindhi last updated on 22/Feb/18 $$\frac{{a}^{\mathrm{2}}…
Question Number 161527 by mnjuly1970 last updated on 19/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161507 by cortano last updated on 18/Dec/21 Answered by MathsFan last updated on 19/Dec/21 $${x}=\pm\mathrm{0}.\mathrm{51} \\ $$ Answered by mr W last updated…
Question Number 95964 by i jagooll last updated on 29/May/20 $$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{13}}\\{\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}=\mathrm{2xy}^{\mathrm{2}} }\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95967 by pticantor last updated on 29/May/20 Commented by pticantor last updated on 29/May/20 $${please}\:{i}\:{need}\:{help}\:{please}\:{please} \\ $$ Answered by john santu last updated…
Question Number 161500 by HongKing last updated on 18/Dec/21 $$\mathrm{x}^{\mathrm{6}} \:-\:\mathrm{6x}^{\mathrm{5}} \:+\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{find}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=? \\ $$ Answered by mr W…
Question Number 30425 by abdo imad last updated on 22/Feb/18 $${decompose}\:{inside}\:{R}\left[{x}\right]\: \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}{n}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\:\:{with}\:{n}\:{from}\:{N}\:{and}\:{n}>\mathrm{0}. \\ $$ Answered by sma3l2996 last updated on 24/Feb/18…
Question Number 161484 by bobhans last updated on 18/Dec/21 $$\:\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}=\mathrm{9}}\\{\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)=\mathrm{18}}\end{cases} \\ $$$$\:\:\:\mathrm{8a}+\mathrm{4b}=? \\ $$ Answered by mr W last updated on 18/Dec/21 $${let}\:{A}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}},\:{B}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}} \\ $$$${let}\:{p}={A}+{B},\:{q}={AB}…
Question Number 30405 by scientist last updated on 22/Feb/18 $${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{13} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{xy}+{y}^{\mathrm{2}} =\mathrm{35} \\ $$$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$ Answered by mrW2 last updated…
Question Number 30401 by amit96 last updated on 22/Feb/18 $${is}\:{there}\:{exists}\:{a}\:{onto}\:{group}\:{homo}\:{from}\:{D}\mathrm{4}\:{to}\:{Z}\mathrm{4}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com