Question Number 28533 by abdo imad last updated on 26/Jan/18 $${let}\:{give}\:{the}\:{matrice}\:\:{A}=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${calculate}\:\:{A}^{{n}} \:\:{then}\:{find}\:\:{e}^{{A}} \:. \\ $$ Commented by abdo imad last updated on 28/Jan/18…
Question Number 28534 by abdo imad last updated on 26/Jan/18 $${find}\:{n}\:{from}\:{N}\:\:{in}\:{ordre}\:{tohave}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}\:{divide} \\ $$$$\left({x}+\mathrm{1}\right)^{{n}} −{x}^{{n}} −\mathrm{1}. \\ $$ Commented by abdo imad last updated on…
Question Number 28532 by abdo imad last updated on 26/Jan/18 $${let}\:{give}\:\:{A}_{{n}} =\:\left(\:{C}_{{n}} ^{\mathrm{0}} \:.{C}_{{n}} ^{\mathrm{1}} \:….{C}_{{n}} ^{{n}} \right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} \:\:\:{find}\:^{{n}} \sqrt{{A}}\:_{{n}} . \\ $$ Commented by…
Question Number 159587 by cortano last updated on 19/Nov/21 $$\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{3}−{x}}\:+\:\sqrt{\mathrm{3}−{x}}\:\sqrt{\mathrm{4}−{x}}\:+\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{4}−{x}}\:=\:{x}+\mathrm{2} \\ $$$$ \\ $$ Commented by mr W last updated on 19/Nov/21 $${we}\:{can}\:{use}\:{my}\:{method}\:{in}\:{Q}\mathrm{159527} \\ $$$${for}\:{solving}\:{this}\:{kind}\:{of}\:{equations}.…
Question Number 28506 by Tinkutara last updated on 26/Jan/18 Commented by Tinkutara last updated on 27/Jan/18 Anyone? Commented by ajfour last updated on 27/Jan/18 $${post}\:{the}\:{answer},\:{please}.…
Question Number 159578 by HongKing last updated on 18/Nov/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{1}}\right)\right)^{\mathrm{2}} }{\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)}\right) \\ $$$$\mathrm{Answer}:\:\:\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 159568 by HongKing last updated on 18/Nov/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$ Commented by HongKing last updated on 18/Nov/21 $$\mathrm{Sorry}\:\mathrm{this}\:\mathrm{example}\:\mathrm{came}\:\mathrm{by}\:\mathrm{mistake}…
Question Number 159551 by henderson last updated on 18/Nov/21 $$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\:\:\:\:\:\underset{\underset{>} {\boldsymbol{{x}}\rightarrow\mathrm{0}}} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{E}}\:\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{x}}}\right)\:=\:?\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 159532 by HongKing last updated on 18/Nov/21 $$\mathrm{if}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\:\frac{\mathrm{x}^{\mathrm{19}} }{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{30}} }}\:\mathrm{dx}\:\geqslant\:\mathrm{log}\:\sqrt[{\mathrm{10}}]{\frac{\mathrm{2}\:+\:\mathrm{b}^{\mathrm{20}} }{\mathrm{2}\:+\:\mathrm{a}^{\mathrm{20}} }} \\ $$$$ \\ $$ Terms of Service…
Question Number 159529 by HongKing last updated on 18/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{7}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{2}}\:\mathrm{z}\:\left(\mathrm{x}\:+\:\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$ Answered by 1549442205PVT…