Menu Close

Category: Algebra

if-a-10-a-5-1-0-then-a-2005-1-a-2005-a-a-10-a-11-b-a-10-a-5-c-3-a-10-a-5-d-0-with-steps-

Question Number 94521 by Abdulrahman last updated on 19/May/20 $$\mathrm{if}\:\mathrm{a}^{\mathrm{10}} +\mathrm{a}^{\mathrm{5}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{a}^{\mathrm{2005}} +\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2005}} }=? \\ $$$$\mathrm{a}:\:\mathrm{a}^{\mathrm{10}} +\mathrm{a}^{\mathrm{11}} \:\:\:\:\mathrm{b}:\mathrm{a}^{\mathrm{10}} +\mathrm{a}^{\mathrm{5}} \:\:\:\mathrm{c}:\mathrm{3}\left(\mathrm{a}^{\mathrm{10}} +\mathrm{a}^{\mathrm{5}} \right)\:\:\mathrm{d}:\mathrm{0} \\…

x-1-3-n-x-1-x-2-x-n-x-n-n-N-n-1-Find-n-1-1-n-1-x-n-

Question Number 160008 by HongKing last updated on 23/Nov/21 $$\mathrm{x}_{\mathrm{1}} =\mathrm{3}\:;\:\mathrm{n}\left(\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +…+\mathrm{x}_{\boldsymbol{\mathrm{n}}} \right)=\mathrm{x}_{\boldsymbol{\mathrm{n}}} \:;\:\mathrm{n}\in\mathbb{N}\:;\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{Find}: \\ $$$$\Omega\:=\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\mathrm{x}_{\boldsymbol{\mathrm{n}}} \\ $$ Commented…

Find-lim-n-n-1-n-1-1-2-1-2-2-1-n-2-2-6-e-x-2-dx-

Question Number 160009 by HongKing last updated on 23/Nov/21 $$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\:\centerdot\underset{\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:…\:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }} {\overset{\:\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{6}}} {\int}}\:\mathrm{e}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\right) \\ $$ Answered by…

Evaluate-lim-n-n-n-1-e-1-x-dx-

Question Number 160006 by HongKing last updated on 23/Nov/21 $$\mathrm{Evaluate}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{n}}} {\overset{\boldsymbol{\mathrm{n}}+\mathrm{1}} {\int}}\:\mathrm{e}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} \:\mathrm{dx}\:=\:? \\ $$$$ \\ $$ Commented by kowalsky78 last updated…