Question Number 159355 by mnjuly1970 last updated on 16/Nov/21 Answered by mr W last updated on 16/Nov/21 $${radius}\:{of}\:{small}\:{circle}\:{r}=\frac{{b}}{\mathrm{2}} \\ $$$$\frac{{b}}{\mathrm{2}}×\frac{{b}}{\mathrm{2}}=\left({a}−\frac{{b}}{\mathrm{2}}\right)\left({a}+\frac{{b}}{\mathrm{2}}\right) \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{4}}={a}^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{\mathrm{4}}…
Question Number 28275 by ajfour last updated on 23/Jan/18 $${Find}\:{area}\:{of}\:{the}\:{region} \\ $$$$\left[{y}\right]=\left[{x}\right]\:\:{for}\:\:{x}\in\left[\mathrm{2},\:\mathrm{5}\right]\:. \\ $$$$\left[{x}\right]\:{is}\:{greatest}\:{integer}\:{less}\:{than}\:{or} \\ $$$${equal}\:{to}\:{x}\:. \\ $$ Commented by mrW2 last updated on 23/Jan/18…
Question Number 28267 by abdo imad last updated on 22/Jan/18 $${let}\:{give}\:{the}\:{polynomial} \\ $$$${P}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\left(\mathrm{1}+{ix}\right)^{{n}} \:−\left(\mathrm{1}−{ix}\right)^{{n}} \right)\:.{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$${and}\:{factorize}\:{P}\left({x}\right). \\ $$ Commented by abdo imad last updated…
Question Number 28264 by abdo imad last updated on 22/Jan/18 $${give}\:{the}\:{decomposition}\:{of}\: \\ $$$${F}\left({x}\right)\:\:\:=\:\:\:\:\:\:\frac{\mathrm{1}\:}{\prod_{{k}=\mathrm{1}} ^{{n}} \:\left({x}−{k}^{\mathrm{2}} \right)}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28265 by abdo imad last updated on 22/Jan/18 $$\left.\mathrm{1}\right)\:\:{find}\:{P}\in{R}\left[{x}\right]\:/\:{P}\left({sinx}\right)\:={sin}\left(\mathrm{2}{n}+\mathrm{1}\right){x} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\:{and}\:{degP} \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:\:\frac{\mathrm{1}}{{P}}\:\:{and}\:{prove}\:{that} \\ $$$$\frac{\mathrm{2}{n}+\mathrm{1}}{{sin}\left(\mathrm{2}{n}+\mathrm{1}\right){x}}\:=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{{sinx}−{sin}\:\left(\frac{{k}\pi}{\left.\mathrm{2}{n}+\mathrm{1}\right)}\right)}\:\:. \\ $$ Terms of Service…
Question Number 159332 by 0731619 last updated on 15/Nov/21 Commented by bobhans last updated on 16/Nov/21 $$\left(\mathrm{1}\right)\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{−} } \:\sqrt{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{undefined}\: \\ $$$$\:\:\:\:\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\sqrt{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{−}…
Question Number 159325 by mnjuly1970 last updated on 15/Nov/21 $$ \\ $$$$\:\:\:\:\:\:#\:\mathrm{T}{rigonometry}# \\ $$$$\:\:\:\:\:\:\:{solve}\:\left(\:\:\:\mathscr{E}{quation}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{sin}\left(\frac{{x}}{\mathrm{2}}\:\right)\:−\:\mathrm{2}{sin}\:\left(\frac{{x}}{\mathrm{3}}\:\right)=\:\mathrm{0}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$ Commented…
Question Number 159300 by saly last updated on 15/Nov/21 Answered by Derrick last updated on 15/Nov/21 $${preve} \\ $$$$\left.{a}\right){montrons}\:{par}\:{double}\:{inclusion} \\ $$$${soit}\:{x} \\ $$$${x}\in{f}^{−\mathrm{1}} \:\left({A}\cup{B}\right)\Leftrightarrow{f}\left({x}\right)\in\left({A}\cup{B}\right) \\…
Question Number 28219 by math solver last updated on 22/Jan/18 Commented by mrW2 last updated on 22/Jan/18 $${z}={x}+{iy} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{y}\right)^{\mathrm{2}} =\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}}…
Question Number 159292 by HongKing last updated on 15/Nov/21 $$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{x}\:\mathrm{arctan}\left(\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$$$ \\ $$ Answered by mindispower last updated on 15/Nov/21 $$=\int_{\mathrm{0}}…