Menu Close

Category: Algebra

Question-159355

Question Number 159355 by mnjuly1970 last updated on 16/Nov/21 Answered by mr W last updated on 16/Nov/21 $${radius}\:{of}\:{small}\:{circle}\:{r}=\frac{{b}}{\mathrm{2}} \\ $$$$\frac{{b}}{\mathrm{2}}×\frac{{b}}{\mathrm{2}}=\left({a}−\frac{{b}}{\mathrm{2}}\right)\left({a}+\frac{{b}}{\mathrm{2}}\right) \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{4}}={a}^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{\mathrm{4}}…

let-give-the-polynomial-P-x-1-2i-1-ix-n-1-ix-n-find-the-roots-of-P-x-and-factorize-P-x-

Question Number 28267 by abdo imad last updated on 22/Jan/18 $${let}\:{give}\:{the}\:{polynomial} \\ $$$${P}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\:\left(\mathrm{1}+{ix}\right)^{{n}} \:−\left(\mathrm{1}−{ix}\right)^{{n}} \right)\:.{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$${and}\:{factorize}\:{P}\left({x}\right). \\ $$ Commented by abdo imad last updated…

1-find-P-R-x-P-sinx-sin-2n-1-x-2-find-the-roots-of-P-and-degP-3-decompose-1-P-and-prove-that-2n-1-sin-2n-1-x-k-0-2n-1-k-cos-kpi-2n-1-sinx-sin-kpi-2n-1

Question Number 28265 by abdo imad last updated on 22/Jan/18 $$\left.\mathrm{1}\right)\:\:{find}\:{P}\in{R}\left[{x}\right]\:/\:{P}\left({sinx}\right)\:={sin}\left(\mathrm{2}{n}+\mathrm{1}\right){x} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\:{and}\:{degP} \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:\:\frac{\mathrm{1}}{{P}}\:\:{and}\:{prove}\:{that} \\ $$$$\frac{\mathrm{2}{n}+\mathrm{1}}{{sin}\left(\mathrm{2}{n}+\mathrm{1}\right){x}}\:=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{{sinx}−{sin}\:\left(\frac{{k}\pi}{\left.\mathrm{2}{n}+\mathrm{1}\right)}\right)}\:\:. \\ $$ Terms of Service…

Question-159332

Question Number 159332 by 0731619 last updated on 15/Nov/21 Commented by bobhans last updated on 16/Nov/21 $$\left(\mathrm{1}\right)\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{−} } \:\sqrt{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{undefined}\: \\ $$$$\:\:\:\:\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\sqrt{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{−}…

Question-159300

Question Number 159300 by saly last updated on 15/Nov/21 Answered by Derrick last updated on 15/Nov/21 $${preve} \\ $$$$\left.{a}\right){montrons}\:{par}\:{double}\:{inclusion} \\ $$$${soit}\:{x} \\ $$$${x}\in{f}^{−\mathrm{1}} \:\left({A}\cup{B}\right)\Leftrightarrow{f}\left({x}\right)\in\left({A}\cup{B}\right) \\…

Question-28219

Question Number 28219 by math solver last updated on 22/Jan/18 Commented by mrW2 last updated on 22/Jan/18 $${z}={x}+{iy} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{y}\right)^{\mathrm{2}} =\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}}…

Find-0-x-arctan-x-x-1-x-2-1-dx-

Question Number 159292 by HongKing last updated on 15/Nov/21 $$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{x}\:\mathrm{arctan}\left(\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$$$ \\ $$ Answered by mindispower last updated on 15/Nov/21 $$=\int_{\mathrm{0}}…