Menu Close

Category: Algebra

Find-lim-n-log-1-1-n-1-2-log-1-1-n-2-Answer-0-

Question Number 159578 by HongKing last updated on 18/Nov/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{1}}\right)\right)^{\mathrm{2}} }{\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)}\right) \\ $$$$\mathrm{Answer}:\:\:\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-sin-2-x-cos-x-dx-

Question Number 159568 by HongKing last updated on 18/Nov/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$ Commented by HongKing last updated on 18/Nov/21 $$\mathrm{Sorry}\:\mathrm{this}\:\mathrm{example}\:\mathrm{came}\:\mathrm{by}\:\mathrm{mistake}…

hi-help-me-for-this-one-lim-x-0-gt-x-E-x-

Question Number 159551 by henderson last updated on 18/Nov/21 $$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\:\:\:\:\:\underset{\underset{>} {\boldsymbol{{x}}\rightarrow\mathrm{0}}} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{E}}\:\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{x}}}\right)\:=\:?\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

if-0-lt-a-b-then-a-b-x-19-1-x-30-dx-log-2-b-20-2-a-20-1-10-

Question Number 159532 by HongKing last updated on 18/Nov/21 $$\mathrm{if}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\:\frac{\mathrm{x}^{\mathrm{19}} }{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{30}} }}\:\mathrm{dx}\:\geqslant\:\mathrm{log}\:\sqrt[{\mathrm{10}}]{\frac{\mathrm{2}\:+\:\mathrm{b}^{\mathrm{20}} }{\mathrm{2}\:+\:\mathrm{a}^{\mathrm{20}} }} \\ $$$$ \\ $$ Terms of Service…

Solve-for-real-numbers-2x-2-3y-2-z-2-7-x-2-y-2-z-2-2-z-x-y-

Question Number 159529 by HongKing last updated on 18/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{7}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{2}}\:\mathrm{z}\:\left(\mathrm{x}\:+\:\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$ Answered by 1549442205PVT…

Find-0-6-sin-x-sin-x-pi-3-sin-x-2pi-3-sin-3x-cos-3x-dx-Answer-pi-48-

Question Number 159528 by HongKing last updated on 18/Nov/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} {\int}}\frac{\mathrm{sin}\left(\mathrm{x}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{3}}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)\:+\:\mathrm{cos}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$$$\mathrm{Answer}:\:\:\frac{\pi}{\mathrm{48}} \\ $$ Answered by mnjuly1970 last updated on 18/Nov/21…