Menu Close

Category: Algebra

let-give-the-polynomial-p-x-x-1-n-x-1-n-with-n-from-N-1-give-the-factorisation-of-p-x-inside-C-x-2-prove-that-k-0-n-1-cotan-kpi-2p-1-1-2p-1-

Question Number 28434 by abdo imad last updated on 25/Jan/18 $${let}\:{give}\:{the}\:{polynomial}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} {with}\:{n} \\ $$$${from}\:{N}^{\ast} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{the}\:{factorisation}\:{of}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{p}+\mathrm{1}}} \\ $$ Terms of…

let-put-w-e-i-2pi-n-calculate-S-n-k-0-n-1-1-x-w-k-and-W-n-k-0-n-1-1-x-w-k-2-

Question Number 28432 by abdo imad last updated on 25/Jan/18 $${let}\:{put}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:{calculate}\:\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{x}−{w}^{{k}} }\:\:{and} \\ $$$${W}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left({x}−{w}^{{k}} \right)^{\mathrm{2}} }\:. \\ $$…

we-have-for-quadratic-equations-x-b-b-2-4ac-2a-what-about-cubic-equation-is-there-any-rules-or-ways-to-solve-

Question Number 93963 by  M±th+et+s last updated on 16/May/20 $${we}\:{have}\:{for}\:{quadratic}\:{equations} \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${what}\:{about}\:{cubic}\:{equation}\:{is}\:{there}\:{any} \\ $$$${rules}\:{or}\:{ways}\:{to}\:{solve}? \\ $$ Commented by Kunal12588 last updated on…

Question-159494

Question Number 159494 by HongKing last updated on 17/Nov/21 Answered by qaz last updated on 18/Nov/21 $$\left(\mathrm{1}+\mathrm{a}\right)\left(\mathrm{1}+\frac{\mathrm{b}}{\mathrm{a}}\right)\left(\mathrm{1}+\frac{\mathrm{c}}{\mathrm{b}}\right)\left(\mathrm{1}+\frac{\mathrm{81}}{\mathrm{c}}\right) \\ $$$$\geqslant\left(\mathrm{1}+\sqrt{\mathrm{a}}\centerdot\sqrt{\frac{\mathrm{b}}{\mathrm{a}}}\right)^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\frac{\mathrm{c}}{\mathrm{b}}}\centerdot\sqrt{\frac{\mathrm{81}}{\mathrm{c}}}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{1}+\sqrt{\mathrm{b}}\right)^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\frac{\mathrm{81}}{\mathrm{b}}}\right)^{\mathrm{2}} \\ $$$$\geqslant\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{\mathrm{b}}\centerdot\sqrt[{\mathrm{4}}]{\frac{\mathrm{81}}{\mathrm{b}}}\right)^{\mathrm{4}}…

Find-1-x-1-x-2-dx-

Question Number 159477 by HongKing last updated on 17/Nov/21 $$\mathrm{Find}:\:\:\:\Omega\:=\int\:\frac{\mathrm{1}}{\left(\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Answered by MJS_new last updated on 17/Nov/21 $${t}=\mathrm{arctan}\:{x} \\ $$$$\Rightarrow \\ $$$$\int\mathrm{sin}^{\mathrm{2}}…