Menu Close

Category: Algebra

Question-159396

Question Number 159396 by quvonnn last updated on 16/Nov/21 Answered by som(math1967) last updated on 16/Nov/21 $${area}\:{of}\:\bigtriangleup{BCE}={Area}\:{of}\:\bigtriangleup{ECF} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4}×\mathrm{3}=\mathrm{6}\:{sq}.{unit} \\ $$$${CM}\:{is}\:{bisector}\:{of}\:\angle{C} \\ $$$$\:\therefore\frac{{EM}}{{MB}}\:=\frac{{EC}}{{CB}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{{Ar}\bigtriangleup{EMC}}{{Ar}\:\bigtriangleup{CMB}}=\frac{\mathrm{3}}{\mathrm{4}}…

Given-that-a-n-1-b-n-1-a-n-b-n-is-AM-between-a-and-b-where-a-b-a-b-0-find-out-the-value-of-n-

Question Number 28327 by Rasheed.Sindhi last updated on 24/Jan/18 $$\mathrm{Given}\:\mathrm{that}\:\frac{{a}^{{n}+\mathrm{1}} +{b}^{{n}+\mathrm{1}} }{{a}^{{n}} +{b}^{{n}} }\:\mathrm{is}\:\mathrm{AM}\:\mathrm{between}\:{a} \\ $$$$\mathrm{and}\:{b}\:,\mathrm{where}\:{a}\neq{b}\:\wedge\:{a},{b}\neq\mathrm{0};\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}. \\ $$ Answered by mrW2 last updated on 24/Jan/18…

If-the-roots-of-x-2-px-q-0-q-0-are-and-Find-the-roots-of-qx-2-2q-p-2-x-q-0-in-terms-of-and-

Question Number 28319 by NECx last updated on 24/Jan/18 $${If}\:{the}\:{roots}\:{of}\:{x}^{\mathrm{2}} +{px}+{q}=\mathrm{0},\:{q}\neq\mathrm{0} \\ $$$${are}\:\alpha\:{and}\:\beta.{Find}\:{the}\:{roots}\:{of} \\ $$$${qx}^{\mathrm{2}} +\left(\mathrm{2}{q}−{p}^{\mathrm{2}} \right){x}+{q}=\mathrm{0}\:{in}\:{terms}\:{of} \\ $$$$\alpha\:{and}\:\beta. \\ $$ Answered by Rasheed.Sindhi last…

let-give-P-n-x-k-0-2n-1-1-2-1-k-1-x-k-and-Q-n-x-1-x-2-x-2-3-x-n-n-1-prove-that-Q-n-divide-P-n-

Question Number 28311 by abdo imad last updated on 23/Jan/18 $${let}\:{give}\:{P}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+…+\frac{\mathrm{1}}{{k}+\mathrm{1}}\right){x}^{{k}} \:\:{and} \\ $$$${Q}_{{n}} \left({x}\right)=\:\mathrm{1}+\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\:+…\frac{{x}^{{n}} }{{n}+\mathrm{1}}\:\:.{prove}\:{that}\:{Q}_{{n}\:} \:{divide}\:{P}_{{n}} . \\ $$ Terms…