Menu Close

Category: Algebra

for-a-b-c-gt-0-and-a-b-c-2-find-min-2ab-2-b-3-c-2bc-2-c-3-a-2ca-2-a-3-b-or-disprove-that-such-a-minimum-doesn-t-exist-

Question Number 159125 by mr W last updated on 13/Nov/21 $${for}\:{a},\:{b},\:{c}\:>\mathrm{0}\:{and}\:{a}+{b}+{c}=\mathrm{2} \\ $$$${find}\:{min}\left(\mathrm{2}{ab}^{\mathrm{2}} +{b}^{\mathrm{3}} {c},\:\mathrm{2}{bc}^{\mathrm{2}} +{c}^{\mathrm{3}} {a},\:\mathrm{2}{ca}^{\mathrm{2}} +{a}^{\mathrm{3}} {b}\right) \\ $$$${or}\:{disprove}\:{that}\:{such}\:{a}\:{minimum} \\ $$$${doesn}'{t}\:{exist}. \\ $$…

Assume-x-y-z-gt-0-and-x-2-y-2-z-2-12-Prove-that-cycl-x-y-1-y-x-1-x-1-y-9-

Question Number 159119 by HongKing last updated on 13/Nov/21 $$\mathrm{Assume}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{12} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\underset{\boldsymbol{\mathrm{cycl}}} {\sum}\:\frac{\frac{\mathrm{x}}{\mathrm{y}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{y}}{\mathrm{x}}}{\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}}\:\leqslant\:\mathrm{9} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-159092

Question Number 159092 by HongKing last updated on 12/Nov/21 Answered by Rasheed.Sindhi last updated on 13/Nov/21 $$\left({i}\right){a}\left({a}−{b}\right)=\mathrm{2018} \\ $$$$\begin{cases}{{a}=\mathrm{1}\:\wedge\:{a}−{b}=\mathrm{2018}\Rightarrow{b}=−\mathrm{2017}<\mathrm{0}}\\{{a}=\mathrm{2018}\:\wedge\:{a}−{b}=\mathrm{1}\Rightarrow{b}=\mathrm{2017}}\\{{a}=\mathrm{2}\:\wedge\:{a}−{b}=\mathrm{1009}\Rightarrow{b}=−\mathrm{1007}<\mathrm{0}}\\{{a}=\mathrm{1009}\:\wedge\:{a}−{b}=\mathrm{2}\Rightarrow{b}=\mathrm{1007}}\end{cases} \\ $$$${Possible}\:{solutions}\:\left({a},{b}\right)=\left(\mathrm{2018},\mathrm{2017}\right), \\ $$$$\left(\mathrm{1009},\mathrm{1007}\right) \\ $$$$\left({ii}\right)\:{bc}+{ac}−{b}^{\mathrm{2}}…

16-4-2-2-

Question Number 159066 by amin96 last updated on 12/Nov/21 $$\mathrm{16}/\mathrm{4}\left(\mathrm{2}+\mathrm{2}\right)=? \\ $$ Commented by Rasheed.Sindhi last updated on 12/Nov/21 $$\mathrm{2}\:\mathrm{Conventions}: \\ $$$$\left(\mathrm{i}\right)\mathrm{implied}\:\mathrm{multiplication}\:\mathrm{has}\:\mathrm{priority} \\ $$$$\:\:\:\:\:\:\:\mathrm{over}\:\mathrm{division}: \\…

p-q-are-two-natural-number-and-p-6-2p-4-4p-2-p-9-8p-3-1-4q-5-6q-then-find-the-minimum-possible-value-of-p-q-

Question Number 27996 by JI Siam last updated on 18/Jan/18 $$\mathrm{p},\mathrm{q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{and}\: \\ $$$$\:\frac{\mathrm{p}^{\mathrm{6}} +\mathrm{2p}^{\mathrm{4}} +\mathrm{4p}^{\mathrm{2}} }{\mathrm{p}^{\mathrm{9}} −\mathrm{8p}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4q}}=\frac{\mathrm{5}}{\mathrm{6q}}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}+\mathrm{q} \\ $$ Answered…