Question Number 158295 by HongKing last updated on 02/Nov/21 $$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{sin}^{-\mathrm{1}} \:\mathrm{x}\:\mathrm{log}\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 27213 by shiv15031973@gmail.com last updated on 04/Jan/18 $$\left[\left(\mathrm{16}{x}^{\mathrm{4}} −\mathrm{1}\right)\right]/\left[\mathrm{2}{x}−\mathrm{1}\right]\:{factorise}\:{it} \\ $$ Commented by abdo imad last updated on 03/Jan/18 $$\mathrm{16}\:{x}^{\mathrm{4}} \:−\mathrm{1}\:=\:\:\left(\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{1}\:=\:\left(\mathrm{4}{x}^{\mathrm{2}}…
Question Number 158276 by HongKing last updated on 01/Nov/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{then}: \\ $$$$\mathrm{2}\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\:\geqslant\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \right)\:+\:\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right) \\ $$$$ \\ $$ Terms of…
Question Number 158281 by Ari last updated on 01/Nov/21 Commented by Ari last updated on 01/Nov/21 Find the constant term on the decomposition of expression Commented by cortano last updated on 02/Nov/21 $$\Rightarrow\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{3}}…
Question Number 158273 by HongKing last updated on 01/Nov/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 158272 by HongKing last updated on 01/Nov/21 Answered by qaz last updated on 04/Nov/21 $$\Omega=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}{\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 158274 by HongKing last updated on 01/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\left(\mathrm{1}\:+\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:+\:\mathrm{2}\boldsymbol{\mathrm{ix}}^{\mathrm{2}} \:+\:\left(\boldsymbol{\mathrm{i}}\:-\:\mathrm{1}\right)\boldsymbol{\mathrm{x}}\:-\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by mindispower last updated on…
Question Number 158275 by HongKing last updated on 01/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{32}} \:+\:\mathrm{x}^{\mathrm{16}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{2}\:\sqrt{\mathrm{2}}\:\mathrm{x}^{\mathrm{12}} \:\mathrm{y} \\ $$$$ \\ $$ Answered by mindispower last updated…
Question Number 158271 by HongKing last updated on 01/Nov/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 92727 by I want to learn more last updated on 08/May/20 $$\mathrm{Solve}:\:\:\:\:\:\mathrm{x}^{\mathrm{y}} \:\:=\:\:\mathrm{y}^{\mathrm{x}} \:\:\:\:\:…….\:\:\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{x}} \:\:=\:\:\mathrm{15}^{\mathrm{y}} \:\:\:\:……\:\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\mathrm{x}\:\:\neq\:\:\mathrm{y},\:\:\:\:\:\:\:\mathrm{x},\:\:\mathrm{y}\:\in\:\mathbb{R} \\ $$ Answered…