Menu Close

Category: Algebra

if-x-y-z-gt-0-and-xyz-27-prove-that-1-x-2-27-1-y-2-27-1-z-2-27-1-12-

Question Number 158508 by HongKing last updated on 05/Nov/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{xyz}=\mathrm{27}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} +\mathrm{27}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

x-3-5x-3-2-x-1-

Question Number 27419 by ayushrtet last updated on 06/Jan/18 $$\left({x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{3}} −\mathrm{2}\right)/\left({x}−\mathrm{1}\right) \\ $$ Answered by Rasheed.Sindhi last updated on 06/Jan/18 $$\left({x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{3}} −\mathrm{2}\right)/\left({x}−\mathrm{1}\right) \\…

Question-158465

Question Number 158465 by HongKing last updated on 04/Nov/21 Answered by qaz last updated on 04/Nov/21 $$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\begin{pmatrix}{\mathrm{2n}}\\{\:\:\mathrm{n}}\end{pmatrix}}{\mathrm{4}^{\mathrm{n}} \left(\mathrm{4n}+\mathrm{5}\right)\left(\mathrm{2n}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{−\mathrm{1}/\mathrm{2}}\\{\:\:\:\:\:\mathrm{n}}\end{pmatrix}\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}−\frac{\mathrm{4}}{\mathrm{4n}+\mathrm{5}}\right)…

let-give-p-x-1-ix-1-ix-n-1-itan-1-itan-factorize-p-x-inside-C-x-

Question Number 27384 by abdo imad last updated on 05/Jan/18 $${let}\:{give}\:\:{p}\left({x}\right)=\:\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{n}} −\:\frac{\mathrm{1}+{itan}\alpha\:}{\mathrm{1}−{itan}\alpha}\:\:{factorize}\:{p}\left({x}\right)\:{inside} \\ $$$${C}\left[{x}\right]. \\ $$ Commented by abdo imad last updated on 07/Jan/18 $${roots}\:{of}\:{p}\left({x}\right)\:\:…

resolve-inside-C-z-i-z-i-n-z-i-z-i-n-2cos-and0-lt-lt-pi-n-integer-

Question Number 27382 by abdo imad last updated on 05/Jan/18 $${resolve}\:{inside}\:{C}\:\:\left(\frac{{z}−{i}}{{z}+{i}}\right)^{{n}} +\left(\frac{{z}+{i}}{{z}−{i}}\right)^{{n}} =\:\mathrm{2}{cos}\theta\:{and}\mathrm{0}\:<\theta<\pi\:.{n}\:{integer}. \\ $$ Answered by sma3l2996 last updated on 05/Jan/18 $$\left(\frac{{z}−{i}}{{z}+{i}}\right)^{{n}} +\left(\frac{{z}−{i}}{{z}+{i}}\right)^{−{n}} −\mathrm{2}{cos}\theta=\mathrm{0}…

Question-158455

Question Number 158455 by mnjuly1970 last updated on 04/Nov/21 Answered by MJS_new last updated on 05/Nov/21 $$\sqrt{{x}\lfloor{x}\rfloor+{x}^{\mathrm{2}} \lfloor{x}−\mathrm{1}\rfloor}=\sqrt{{x}\left(\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor−{x}\right)} \\ $$$${g}\left({x}\right)={x}\left(\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor−{x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}=\mathrm{0}\vee\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor={x} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\vee{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{but}\:\left(\underset{{x}\rightarrow\mathrm{1}^{−} }…