Menu Close

Category: Algebra

Question-27376

Question Number 27376 by macanudo last updated on 05/Jan/18 Commented by prakash jain last updated on 05/Jan/18 $$\mathrm{S}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {x}^{{k}} \\ $$$${S}=\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +{x}^{\mathrm{4}}…

if-x-and-y-are-positive-integers-with-2010-2011-lt-x-y-lt-2011-2012-then-compute-the-minimum-value-for-x-y-and-the-values-of-x-and-y-which-achieves-this-minimum-

Question Number 158444 by HongKing last updated on 04/Nov/21 $$\mathrm{if}\:\:\boldsymbol{\mathrm{x}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{y}}\:\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{with} \\ $$$$\frac{\mathrm{2010}}{\mathrm{2011}}\:<\:\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{y}}}\:<\:\frac{\mathrm{2011}}{\mathrm{2012}}\:\:\mathrm{then}\:\mathrm{compute}\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\:\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{values}\:\mathrm{of}\:\:\boldsymbol{\mathrm{x}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{y}}\:\:\mathrm{which}\:\mathrm{achieves} \\ $$$$\mathrm{this}\:\mathrm{minimum} \\ $$ Commented by mr W last…

How-many-divisors-has-the-positive-integer-n-which-verify-n-n-2027-2027-2028-

Question Number 158443 by HongKing last updated on 04/Nov/21 $$\mathrm{How}\:\mathrm{many}\:\mathrm{divisors}\:\mathrm{has}\:\mathrm{the}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\:\boldsymbol{\mathrm{n}}\:\:\mathrm{which}\:\mathrm{verify} \\ $$$$\mathrm{n}^{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{2027}^{\mathrm{2027}^{\mathrm{2028}} } \:? \\ $$ Answered by MJS_new last updated on…

Question-158424

Question Number 158424 by HongKing last updated on 04/Nov/21 Answered by ghimisi last updated on 04/Nov/21 $${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} +\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{3}\sqrt[{\mathrm{3}}]{{y}}+\mathrm{3}\sqrt[{\mathrm{3}}]{{z}}\:\overset{{am}−{gm}} {\geqslant}\mathrm{12}\sqrt[{\mathrm{12}}]{\mathrm{4}{x}^{\mathrm{4}} {y}^{\mathrm{4}} {z}^{\mathrm{4}} }=\mathrm{12}\Rightarrow \\…

solve-8-4-3-1-7-

Question Number 92880 by fath035990 last updated on 09/May/20 $$\mathrm{solve}\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\left(\varkappa−\mathrm{1}\right)+\mathrm{7} \\ $$ Answered by niroj last updated on 09/May/20 $$\:\:\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\left(\varkappa−\mathrm{1}\right)+\mathrm{7} \\ $$$$\:\:\mathrm{or},\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\varkappa−\mathrm{3}+\mathrm{7} \\ $$$$\:\:\mathrm{or},\:\:\mathrm{8}\varkappa−\mathrm{3}\varkappa=\:\mathrm{4}−\mathrm{4}\:\:\: \\…

Question-158410

Question Number 158410 by tebohlouis last updated on 03/Nov/21 Answered by MJS_new last updated on 03/Nov/21 $$\mathrm{2}{x}+\mathrm{3}\geqslant\mathrm{0}\wedge\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)>\mathrm{0}\:\vee\:\mathrm{2}{x}+\mathrm{3}\leqslant\mathrm{0}\wedge\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)<\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2}{x}+\mathrm{3}\geqslant\mathrm{0}\:\Rightarrow\:{x}\geqslant−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)>\mathrm{0}\:\Rightarrow\:{x}<−\mathrm{1}\vee{x}>\mathrm{2} \\ $$$$\Rightarrow\:−\frac{\mathrm{3}}{\mathrm{2}}\leqslant{x}<−\mathrm{1}\vee{x}>\mathrm{2}…