Question Number 157913 by HongKing last updated on 29/Oct/21 $$\mathrm{5}^{\mathrm{2}} \:\centerdot\:\mathrm{5}^{\mathrm{4}} \:\centerdot\:\mathrm{5}^{\mathrm{6}} \:\centerdot\:…\:\centerdot\:\mathrm{5}^{\mathrm{2}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{0},\mathrm{04}^{-\mathrm{28}} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$ Answered by Rasheed.Sindhi last updated on 29/Oct/21…
Question Number 157908 by HongKing last updated on 29/Oct/21 $$\left(\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:\mathrm{in}\:\mathrm{numerical}\:\mathrm{series} \\ $$$$\mathrm{7}+\mathrm{9}+\mathrm{11}+\mathrm{13}+…+\left(\mathrm{2n}+\mathrm{1}\right)=\mathrm{an}^{\mathrm{2}} +\mathrm{bn}+\mathrm{c} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=? \\ $$ Answered by Rasheed.Sindhi last updated on 29/Oct/21…
Question Number 157906 by HongKing last updated on 29/Oct/21 $$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{px}+\mathrm{1}\right)\left(\mathrm{2x}+\mathrm{q}+\mathrm{4}\right)\:\mathrm{function}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{single}\:\mathrm{function},\:\mathrm{find}\:\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}+\boldsymbol{\mathrm{pq}}=? \\ $$$$ \\ $$ Commented by Rasheed.Sindhi last updated on 29/Oct/21 $${What}'{s}\:{meant}\:{by}\:'\mathrm{single}\:\mathrm{function}'? \\…
Question Number 157902 by HongKing last updated on 29/Oct/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$\mathrm{x}\centerdot\left(\mathrm{x}\:+\:\mathrm{4}\right)\:=\:\mathrm{5}\centerdot\left(\mathrm{3}^{\boldsymbol{\mathrm{y}}} \:-\:\mathrm{1}\right) \\ $$$$ \\ $$ Commented by Rasheed.Sindhi last updated on 01/Nov/21 $$\mathrm{3}^{\mathrm{y}}…
Question Number 92366 by Power last updated on 06/May/20 Commented by john santu last updated on 06/May/20 $$\mathrm{x}\approx.\mathrm{4405697621532} \\ $$$$\mathrm{x}\approx−.\mathrm{036779217723038} \\ $$ Commented by Power…
Question Number 157884 by HongKing last updated on 29/Oct/21 $$\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{10}°\right)}\:-\:\mathrm{4}\:\mathrm{sin}\left(\mathrm{70}°\right)\:=\:? \\ $$ Answered by tounghoungko last updated on 29/Oct/21 $$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{10}°}−\mathrm{4}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:\mathrm{10}°+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{10}°\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{10}°}−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{10}°−\mathrm{2sin}\:\mathrm{10}° \\ $$$$=\frac{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{10}°\:\mathrm{cos}\:\mathrm{10}°−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{10}°}{\mathrm{sin}\:\mathrm{10}°}…
Question Number 157891 by HongKing last updated on 29/Oct/21 Answered by TheSupreme last updated on 29/Oct/21 $$\left(\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{36}}+\frac{\mathrm{7}}{\mathrm{144}}+\frac{\mathrm{9}}{\mathrm{400}}+\frac{\mathrm{11}}{\mathrm{900}}\right){x}<\mathrm{70} \\ $$$$\left(\frac{\mathrm{2400}+\mathrm{500}+\mathrm{175}+\mathrm{81}+\mathrm{44}}{\mathrm{3600}}\right){x}<\mathrm{70} \\ $$$$\left(\frac{\mathrm{8}}{\mathrm{9}}\right){x}<\mathrm{70} \\ $$$${x}<\frac{\mathrm{630}}{\mathrm{8}}=\mathrm{78}.\mathrm{75} \\ $$$${largest}\:{x}\:=\:\mathrm{78}…
Question Number 92346 by M±th+et+s last updated on 06/May/20 $${solve} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\sqrt[{\mathrm{3}}]{\mathrm{5}} \\ $$ Commented by jagoll last updated on 06/May/20 $$\mathrm{x}\:\approx\:.\mathrm{79999999722742} \\ $$ Commented…
Question Number 157880 by Engr_Jidda last updated on 29/Oct/21 Commented by mr W last updated on 29/Oct/21 $${i}\:{may}\:{understand}\:{that}\:{you}\:{need}\:{help} \\ $$$${for}\:{questions}\:{about}\:\:{taylor}\:{series} \\ $$$${and}\:{fourier}\:{transform},\:{and}\:{we}\:{take} \\ $$$${those}\:{questions}\:{serious}.\:{but}\:{i}\:{can} \\…
Question Number 157883 by HongKing last updated on 29/Oct/21 $$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\:+\:…\:+\:\frac{\mathrm{n}-\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\right)\:=\:? \\ $$ Answered by puissant last updated on 29/Oct/21 $${S}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}}…