Menu Close

Category: Algebra

Prove-that-7-n-1-divide-3-7-n-5-7-n-1-for-any-positive-integers-n-

Question Number 157967 by HongKing last updated on 30/Oct/21 $$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{7}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\:\mathrm{divide}\:\:\mathrm{3}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:+\:\mathrm{5}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:-\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:\:\boldsymbol{\mathrm{n}} \\ $$ Terms of Service Privacy Policy Contact:…

Solve-for-real-numbers-4tan-x-sin-5x-cos-5-x-0-

Question Number 157964 by HongKing last updated on 30/Oct/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{4tan}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{sin}\left(\mathrm{5x}\right)}{\mathrm{cos}^{\mathrm{5}} \left(\mathrm{x}\right)}\:=\:\mathrm{0} \\ $$$$ \\ $$ Commented by tounghoungko last updated on 30/Oct/21 $$\mathrm{sin}\:\left(\mathrm{5}{x}\right)=\mathrm{5sin}\:{x}\:\mathrm{cos}\:^{\mathrm{4}}…

If-A-and-B-are-two-different-number-such-that-A-B-C-and-A-B-C-find-A-and-B-

Question Number 92425 by Jidda28 last updated on 06/May/20 $$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two} \\ $$$$\mathrm{different}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{A}+\mathrm{B}=\mathrm{C}\:\mathrm{and}\:\mathrm{A}×\mathrm{B}=\mathrm{C} \\ $$$$\mathrm{find}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$ Commented by mr W last updated on…

Question-157957

Question Number 157957 by HongKing last updated on 30/Oct/21 Commented by MJS_new last updated on 31/Oct/21 $$\mathrm{1}\:\mathrm{equation};\:\mathrm{4}\:\mathrm{variables}\:\Rightarrow\:\mathrm{no}\:\mathrm{unique}\:\mathrm{solution} \\ $$ Commented by HongKing last updated on…

Find-n-n-1-1-n-k-1-n-k-3-k-2-3k-2-k-2-

Question Number 157958 by HongKing last updated on 30/Oct/21 $$\mathrm{Find}: \\ $$$$\Omega_{\boldsymbol{\mathrm{n}}} =\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\mathrm{k}^{\mathrm{3}} \:+\:\mathrm{k}^{\mathrm{2}} \:-\:\mathrm{3k}\:-\:\mathrm{2}}{\left(\mathrm{k}\:+\:\mathrm{2}\right)!}\right) \\ $$$$ \\ $$ Terms of…