Menu Close

Category: Algebra

Question-206862

Question Number 206862 by hardmath last updated on 28/Apr/24 Commented by SWPlaysMC last updated on 29/Apr/24 $$\mathrm{Easiest}\:\mathrm{way}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{of}\:\mathrm{proving}\:\mathrm{this}\:\left(\mathrm{I}\:\mathrm{partially}\:\mathrm{solved}\:\mathrm{this}\right) \\ $$$$\mathrm{Let}\:{a}=\mathrm{1},\:{b}=\mathrm{1},\:\mathrm{and}\:{c}=\mathrm{1} \\ $$$$\left(\mathrm{Hint}:\:\mathrm{if}\:\mathrm{any}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:\mathrm{is}\:\mathrm{0}\:\mathrm{then}\:\mathrm{expression}\:\mathrm{is}\:\mathrm{theoretically}\:\mathrm{undefined}\:\mathrm{due}\:\mathrm{to}\:\boldsymbol{\div}\:\mathrm{by}\:\mathrm{0}\right) \\ $$$$\frac{\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{1}}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}}+\frac{\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{1}}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}}+\frac{\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{1}}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}+\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}}\geqslant\mathrm{3} \\ $$$$\mathrm{so}\:\mathrm{all}\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}=\mathrm{1}\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1},\:\mathrm{thus}\:\mathrm{substitute}\:\mathrm{all}\:\mathrm{nums}\:\mathrm{and}\:\mathrm{denoms}\:\mathrm{with}\:\mathrm{1}+\mathrm{1}\:\mathrm{like}\:\mathrm{so}…

If-A-B-and-A-B-are-non-singular-square-matrices-prove-that-A-1-B-1-is-also-non-singular-

Question Number 206868 by depressiveshrek last updated on 28/Apr/24 $$\mathrm{If}\:{A},\:{B}\:\mathrm{and}\:{A}+{B}\:\mathrm{are}\:\mathrm{non}−\mathrm{singular} \\ $$$$\mathrm{square}\:\mathrm{matrices},\:\mathrm{prove}\:\mathrm{that}\:{A}^{−\mathrm{1}} +{B}^{−\mathrm{1}} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{non}−\mathrm{singular}. \\ $$ Answered by aleks041103 last updated on 28/Apr/24 $${A}^{−\mathrm{1}}…

Question-206869

Question Number 206869 by universe last updated on 28/Apr/24 Commented by Frix last updated on 28/Apr/24 $$\mathrm{Answer}\:\mathrm{is}\:\mathrm{e}^{{a}_{\mathrm{1}} } −\mathrm{1}\:\mathrm{for}\:{a}_{\mathrm{1}} \in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$ Commented by universe…

Find-

Question Number 206845 by hardmath last updated on 27/Apr/24 $$\mathrm{Find}:\:\:\:\frac{\infty!}{\infty^{\infty} }\:=\:? \\ $$ Commented by A5T last updated on 27/Apr/24 $${Do}\:{you}\:{wish}\:{to}\:{find}\:{this}:\:\underset{{n}\rightarrow\infty} {{lim}}\frac{{n}!}{{n}^{{n}} }\:? \\ $$…

Question-206839

Question Number 206839 by efronzo1 last updated on 27/Apr/24 Answered by A5T last updated on 27/Apr/24 $${k}^{\mathrm{3}} +{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{2}\leqslant{k}^{\mathrm{2}} +{k}+\mathrm{300}\Leftrightarrow{k}^{\mathrm{3}} +{k}\leqslant\mathrm{298} \\ $$$$\Rightarrow\mathrm{0}\leqslant{k}\leqslant\mathrm{6};\:{checking}\:{implies}\:{k}=\mathrm{0}\:{or}\:\mathrm{2}. \\ $$$${So},{sum}=\mathrm{2}…

0-e-x-2-x-2-1-2-2-dx-I-2-D-e-x-2-y-2-x-2-1-2-2-y-2-1-2-2-dA-x-rcos-y-rsin-J-x-y-r-drd-rdrd-D-re-r-2-r-2-cos-2-

Question Number 206773 by MaruMaru last updated on 24/Apr/24 $$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$${I}^{\mathrm{2}} =\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}}…

If-2-1-10-cos-9-i-sin-9-Find-z-5-

Question Number 206695 by hardmath last updated on 22/Apr/24 $$\mathrm{If}\:\:\:\sqrt[{\mathrm{10}}]{\mathrm{2}}\:\left(\mathrm{cos}\:\mathrm{9}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin}\:\mathrm{9}°\right) \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{z}}^{\mathrm{5}} \:=\:? \\ $$ Answered by A5T last updated on 22/Apr/24 $${z}=\sqrt[{\mathrm{10}}]{\mathrm{2}}{e}^{{i}\left(\mathrm{9}°\right)} \Rightarrow{z}^{\mathrm{5}} =\sqrt{\mathrm{2}}{e}^{{i}\left(\mathrm{45}°\right)}…

if-f-x-2g-1-x-x-2-and-f-1-x-g-x-x-2-then-f-x-

Question Number 206679 by mathlove last updated on 22/Apr/24 $${if}\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)+\mathrm{2}{g}\left(\mathrm{1}−{x}\right)={x}^{\mathrm{2}} \\ $$$${and}\:\:\:\:\:\:\:\:{f}\left(\mathrm{1}−{x}\right)−{g}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${then}\:\:\:\:\:\:\:{f}\left({x}\right)=? \\ $$ Answered by A5T last updated on 22/Apr/24 $${f}\left({x}\right)+\mathrm{2}{g}\left(\mathrm{1}−{x}\right)={x}^{\mathrm{2}} …\left({i}\right)…

Question-206637

Question Number 206637 by jshfnahdj last updated on 21/Apr/24 Answered by Frix last updated on 21/Apr/24 $${x}^{{y}} \:\mathrm{with}\:{x},\:{y}\:\in\mathbb{C} \\ $$$$\mathrm{We}\:\mathrm{need}\:{x}={r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{and}\:{y}={a}+{b}\mathrm{i}\:\Rightarrow \\ $$$${x}^{{y}} =\left({r}\mathrm{e}^{\mathrm{i}\theta} \right)^{{a}+{b}\mathrm{i}}…