Menu Close

Category: Algebra

Question-157663

Question Number 157663 by mathlove last updated on 26/Oct/21 Answered by TheSupreme last updated on 26/Oct/21 $$\mathrm{6}\:\:\mathrm{5}\:\:\mathrm{4}\:\:\mathrm{3}\:\:\mathrm{2}\:\:\mathrm{1}\:\:\mathrm{0} \\ $$$$\mathrm{1}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{2}\:\:{x}^{\mathrm{5}} \\ $$$$\mathrm{1}\:+\:\mathrm{3}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{2}\:\: \\ $$$$/\:−\mathrm{3}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{2}\:−\mathrm{3}{x}^{\mathrm{4}} \\ $$$$/\:−\mathrm{3}\:\:−\mathrm{9}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}\:\:+\mathrm{0}…

find-the-decomposition-in-C-x-then-R-x-for-the-rationsl-fraction-F-x-1-x-2n-1-with-n-integer-not-0-

Question Number 26583 by abdo imad last updated on 27/Dec/17 $${find}\:{the}\:{decomposition}\:{in}\:\mathbb{C}\left[{x}\right]\:{then}\:\mathbb{R}\left[{x}\right] \\ $$$${for}\:{the}\:{rationsl}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}\:}{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:\:.{with}\:{n}\:{integer}\:{not}\:\mathrm{0} \\ $$ Commented by abdo imad last updated on…

p-is-a-polynomial-having-the-roots-x-1-x-2-x-n-with-x-i-x-j-fori-j-give-the-decomposition-of-the-fravtion-F-x-p-x-p-x-

Question Number 26582 by abdo imad last updated on 27/Dec/17 $${p}\:{is}\:{a}\:{polynomial}\:{having}\:{the}\:{roots}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…{x}_{{n}} \\ $$$${with}\:{x}_{{i}} \neq\:{x}_{{j}} \:{fori}\neq{j}\:{give}\:{the}\:{decomposition} \\ $$$${of}\:{the}\:{fravtion}\:{F}\left({x}\right)=\:\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)} \\ $$ Commented by abdo…

3-x-2-x-y-1-x-y-N-

Question Number 157637 by quvonch3737 last updated on 25/Oct/21 $$\:\:\:\:\:\:\mathrm{3}^{{x}} =\mathrm{2}^{{x}} {y}+\mathrm{1} \\ $$$$\:\:\:\:\:\left\{\boldsymbol{{x}}:\boldsymbol{{y}}\right\}\:\varepsilon\mathbb{N}.\: \\ $$ Answered by MathsFan last updated on 25/Oct/21 $$\mathrm{3}^{{x}} −\mathrm{2}^{{x}}…

Question-92084

Question Number 92084 by Power last updated on 04/May/20 Answered by MJS last updated on 04/May/20 $$\mathrm{obviously}\:{x}_{\mathrm{0}} ={y}_{\mathrm{0}} =\mathrm{0} \\ $$$$\mathrm{let}\:{x}\neq\mathrm{0}\:\wedge\:{y}={px}\:\wedge\:{p}\neq\mathrm{0} \\ $$$$\begin{cases}{{x}\left(\left({p}^{\mathrm{5}} +\mathrm{1}\right){x}^{\mathrm{4}} −\mathrm{33}{p}\right)=\mathrm{0}}\\{{x}\left(\mathrm{3}{p}^{\mathrm{2}}…

let-f-C-R-z-min-y-y-y-1-y-y-Im-z-let-w-e-i-2pi-n-n-N-evaluate-S-n-0-k-lt-n-f-w-k-

Question Number 157593 by metamorfose last updated on 25/Oct/21 $${let}\:{f}:{C}\rightarrow{R} \\ $$$$\:\:\:\:\:\:\:\:\:\:{z}\rightarrow{min}\left({y}−\left[{y}\right],\left[{y}+\mathrm{1}\right]−{y}\right)\:,\:{y}={Im}\left({z}\right) \\ $$$${let}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} ,\:{n}\in{N}^{\ast} \\ $$$${evaluate}\:{S}_{{n}} =\underset{\mathrm{0}\leqslant{k}<{n}} {\sum}{f}\left({w}^{{k}} \right) \\ $$ Terms of Service…