Question Number 157379 by quvonch3737 last updated on 22/Oct/21 Commented by quvonch3737 last updated on 22/Oct/21 $${prove}\:{help} \\ $$ Answered by mr W last updated…
Question Number 91843 by jagoll last updated on 03/May/20 $$\begin{cases}{\frac{\mathrm{1}}{{x}}+{y}\:=\:\mathrm{2}}\\{{x}+\frac{\mathrm{1}}{{y}}\:=\:\mathrm{3}}\end{cases} \\ $$$${find}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$ Commented by jagoll last updated on 03/May/20 Commented by jagoll…
Question Number 157351 by physicstutes last updated on 22/Oct/21 $$\mathrm{Prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{r}\left({r}+\mathrm{1}\right)}\:=\:\frac{{n}}{{n}+\mathrm{1}} \\ $$ Commented by hknkrc46 last updated on 22/Oct/21 $$\bigstar\:\frac{\mathrm{1}}{\boldsymbol{{r}}\left(\boldsymbol{{r}}\:+\:\mathrm{1}\right)}\:=\:\frac{\left(\boldsymbol{{r}}\:+\:\mathrm{1}\right)\:−\:\boldsymbol{{r}}}{\boldsymbol{{r}}\left(\boldsymbol{{r}}\:+\:\mathrm{1}\right)} \\…
Question Number 26274 by NECx last updated on 23/Dec/17 $${could}\:{there}\:{be}\:{an}\:{analytical}\:{or} \\ $$$${numerical}\:{meghod}\:{for}\:{solving} \\ $$$${this}\:{non}-{linear}\:{simultaneous} \\ $$$${equation} \\ $$$${x}+{y}=\mathrm{5} \\ $$$${x}^{{x}} +{y}^{{y}} =\mathrm{31} \\ $$$$ \\…
Question Number 26269 by ibraheem160 last updated on 23/Dec/17 $${if}\:{x}^{{x}} =\mathrm{2}\:{what}\:{is}\:{the}\:{value}\:{of}\:{x}? \\ $$ Answered by mrW1 last updated on 23/Dec/17 $${x}^{{x}} =\mathrm{2} \\ $$$${x}\mathrm{ln}\:{x}=\mathrm{ln}\:\mathrm{2} \\…
Question Number 157332 by cortano last updated on 22/Oct/21 Answered by Rasheed.Sindhi last updated on 22/Oct/21 $$\mathrm{6}{x}−{y}=\mathrm{7}{m}\Rightarrow{y}=\mathrm{6}{x}−\mathrm{7}{m} \\ $$$${P}\left({x}\right)=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} +{z}+\mathrm{2021} \\ $$$$=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{3}{x}\left(\mathrm{6}{x}−\mathrm{7}{m}\right)−\mathrm{2}\left(\mathrm{6}{x}−\mathrm{7}{m}\right)^{\mathrm{2}} +{z}+\mathrm{2021}…
Question Number 26250 by Chuks” last updated on 23/Dec/17 $${someone}\:{should}\:{help}\:{witb}\:{solution}\:{please} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{3}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{3}{y}+\mathrm{4} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{6}{x}+{y}−\mathrm{10}=\sqrt{\left({y}+\mathrm{5}\right)}−\sqrt{\left(\mathrm{4}{x}+{y}\right)} \\ $$ Answered by jota@ last…
Question Number 91786 by john santu last updated on 03/May/20 $${repost}\:{question}\:{from} \\ $$$${mr}\:{jagoll} \\ $$$$\begin{cases}{\mathrm{2}+\mathrm{6}{y}\:=\:\frac{{x}}{{y}}−\sqrt{{x}−\mathrm{2}{y}}}\\{\sqrt{{x}+\sqrt{{x}−\mathrm{2}{y}}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:}\end{cases} \\ $$ Commented by john santu last updated on 03/May/20…
Question Number 157323 by MathSh last updated on 22/Oct/21 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\Psi_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)\:+\:\Psi_{\mathrm{2}} \left(\frac{\mathrm{5}}{\mathrm{8}}\right)\:=\:\mathrm{32G}\:+\:\mathrm{4}\pi^{\mathrm{2}} \\ $$$$\Psi-\mathrm{trigamma}\:\mathrm{function} \\ $$$$\mathrm{G}-\mathrm{catalan}\:\mathrm{constant} \\ $$ Answered by mindispower last updated…
Question Number 26235 by ajfour last updated on 22/Dec/17 $${Find}\:{the}\:{real}\:{root}\:{of} \\ $$$$\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}={c}\:. \\ $$ Answered by mrW1 last updated on 22/Dec/17 $${x}\neq\mathrm{0} \\ $$$${x}^{\mathrm{3}}…