Menu Close

Category: Algebra

In-finding-the-equations-of-the-bisectors-of-the-angles-between-two-lines-a-1-x-b-1-y-c-1-0-and-a-2-x-b-2-y-c-2-0-why-we-observe-a-1-a-2-b-1-b-2-gt-0-or-lt-0-for-obtuse-and-acute-angle-bisectors

Question Number 25971 by Tinkutara last updated on 17/Dec/17 $${In}\:{finding}\:{the}\:{equations}\:{of}\:{the} \\ $$$${bisectors}\:{of}\:{the}\:{angles}\:{between}\:{two} \\ $$$${lines}\:{a}_{\mathrm{1}} {x}+{b}_{\mathrm{1}} {y}+{c}_{\mathrm{1}} =\mathrm{0}\:{and}\:{a}_{\mathrm{2}} {x}+{b}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} =\mathrm{0}, \\ $$$${why}\:{we}\:{observe}\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} +{b}_{\mathrm{1}} {b}_{\mathrm{2}}…

8cos-4-x-8cos-2-x-1-0-solution-8cos-2-x-cos-2-x-1-1-0-8cos-2-xsin-2-x-1-sin-2-2x-1-2-sinx-2-2-2x-2kpi-pi-4-2x-2kpi-3pi-4-2x-2kpi-pi-4-2x-2kpi-5pi-4-and

Question Number 25961 by kaivan.ahmadi last updated on 16/Dec/17 $$\mathrm{8cos}^{\mathrm{4}} \mathrm{x}−\mathrm{8cos}^{\mathrm{2}} \mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{solution}:\mathrm{8cos}^{\mathrm{2}} \mathrm{x}\left(\mathrm{cos}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\right)+\mathrm{1}=\mathrm{0}\Rightarrow \\ $$$$−\mathrm{8cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}=−\mathrm{1}\Rightarrow \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{2x}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{sinx}=\underset{−} {+}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\Rightarrow \\…

Find-n-1-n-x-2-x-x-x-2-dx-n-N-GIF-x-x-x-

Question Number 157021 by MathSh last updated on 18/Oct/21 $$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\left(\boldsymbol{\mathrm{n}}\right)\:=\underset{\:\mathrm{1}} {\overset{\:\boldsymbol{\mathrm{n}}} {\int}}\left(\left[\mathrm{x}\right]^{\mathrm{2}} \centerdot\left\{\mathrm{x}\right\}\:+\:\left[\mathrm{x}\right]\centerdot\left\{\mathrm{x}\right\}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\mathrm{n}\in\mathbb{N}\:\:;\:\:\left[\ast\right]-\mathrm{GIF}\:\:;\:\:\left\{\mathrm{x}\right\}=\mathrm{x}-\left[\mathrm{x}\right] \\ $$ Answered by ghimisi last updated…

x-3-1-2-2x-1-1-3-x-

Question Number 91491 by jagoll last updated on 01/May/20 $${x}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}{x}−\mathrm{1}} \\ $$$${x}\:=? \\ $$ Answered by MJS last updated on 01/May/20 $$\mathrm{obviously}\:{x}=\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$$$\left({x}^{\mathrm{3}}…

f-x-4-x-2-and-g-x-3x-1-find-the-sum-different-and-product-f-x-and-g-x-

Question Number 91474 by Zainal Arifin last updated on 01/May/20 $$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:,\:\mathrm{different},\:\mathrm{and}\:\mathrm{product} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right). \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

For-a-certain-amount-of-work-Ade-takes-6hours-less-than-Bode-if-they-work-together-it-takes-them-13hours-20-minutes-How-long-will-it-take-Bode-alone-to-complete-the-work-

Question Number 25937 by Mr eaay last updated on 16/Dec/17 $${For}\:{a}\:{certain}\:{amount}\:{of}\:{work},{Ade}\:{takes} \\ $$$$\mathrm{6}{hours}\:{less}\:{than}\:{Bode}.{if}\:{they}\:{work}\:{together} \\ $$$${it}\:{takes}\:{them}\:\mathrm{13}{hours}\:\mathrm{20}\:{minutes}.{How} \\ $$$${long}\:{will}\:{it}\:{take}\:{Bode}\:{alone}\:{to}\:{complete} \\ $$$${the}\:{work}? \\ $$ Answered by ajfour last…

x-3-lt-0-1-

Question Number 91470 by Zainal Arifin last updated on 01/May/20 $$\mid\mathrm{x}−\mathrm{3}\mid<\mathrm{0}.\mathrm{1} \\ $$ Commented by john santu last updated on 01/May/20 $$−\mathrm{0}.\mathrm{1}<{x}−\mathrm{3}<\mathrm{0}.\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{2}.\mathrm{9}<{x}<\mathrm{3}.\mathrm{1} \\…

Question-91473

Question Number 91473 by A8;15: last updated on 01/May/20 Answered by MJS last updated on 01/May/20 $${x}^{\mathrm{4}} −\mathrm{22}{x}^{\mathrm{2}} +{x}+\mathrm{112}=\mathrm{0} \\ $$$$\mathrm{first},\:\mathrm{testing}\:\mathrm{all}\:\mathrm{factors}\:\mathrm{of}\:\pm\mathrm{112}=\pm\mathrm{2}^{\mathrm{4}} \mathrm{7} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\…