Menu Close

Category: Algebra

Prove-that-in-any-ABC-1-sinA-1-sinB-1-sinC-2-3-cot-A-2-cot-B-2-cot-C-2-

Question Number 205430 by hardmath last updated on 21/Mar/24 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\frac{\mathrm{1}}{\mathrm{sinA}}\:+\:\frac{\mathrm{1}}{\mathrm{sinB}}\:+\:\frac{\mathrm{1}}{\mathrm{sinC}}\:\leqslant\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\mathrm{cot}\frac{\mathrm{A}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{B}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{C}}{\mathrm{2}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

If-a-1-b-1-c-1-8-Then-a-2-b-2-c-2-3-

Question Number 205422 by hardmath last updated on 20/Mar/24 $$\mathrm{If} \\ $$$$\left(\mathrm{a}\:+\:\mathrm{1}\right)\left(\mathrm{b}\:+\:\mathrm{1}\right)\left(\mathrm{c}\:+\:\mathrm{1}\right)\:=\:\mathrm{8} \\ $$$$\mathrm{Then}: \\ $$$$\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\geqslant\:\mathrm{3} \\ $$ Answered by A5T last…

If-a-b-c-gt-0-and-abc-1-Then-a-b-2024-b-c-2024-c-a-2024-a-b-c-

Question Number 205421 by hardmath last updated on 20/Mar/24 $$\mathrm{If} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{abc}=\mathrm{1} \\ $$$$\mathrm{Then}: \\ $$$$\frac{\mathrm{a}}{\mathrm{b}^{\mathrm{2024}} }\:+\:\frac{\mathrm{b}}{\mathrm{c}^{\mathrm{2024}} }\:+\:\frac{\mathrm{c}}{\mathrm{a}^{\mathrm{2024}} }\:\geqslant\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c} \\ $$ Terms of Service Privacy…

Question-205380

Question Number 205380 by cortano12 last updated on 19/Mar/24 Commented by Rasheed.Sindhi last updated on 19/Mar/24 $$\boldsymbol{{please}}\:{don}'{t}\:{write}\:{your}\:{solution} \\ $$$${as}\:{a}\:{comment}!\:{Instead}\:{write}\:{it}\:{as} \\ $$$${answer}\:\boldsymbol{{in}}\:\boldsymbol{{order}}\:\boldsymbol{{to}}\:\boldsymbol{{prserve}}\:\boldsymbol{{chronological}} \\ $$$$\boldsymbol{{order}}\:\boldsymbol{{of}}\:\boldsymbol{{answers}}! \\ $$…

Question-205367

Question Number 205367 by hardmath last updated on 18/Mar/24 Answered by Ghisom last updated on 18/Mar/24 $$\left(\frac{{n}^{\mathrm{3}/\mathrm{2}} }{\mathrm{3}^{{n}} }+\frac{{n}^{\mathrm{2}} }{\mathrm{4}^{{n}} }+\frac{{n}^{\mathrm{5}/\mathrm{2}} }{\mathrm{5}^{{n}} }\right)^{\mathrm{1}/{n}} = \\…

If-ax-2-bx-c-0-had-two-roots-p-and-q-and-p-2-q-2-p-3-q-3-then-show-that-b-3-2a-2-c-ab-2-3abc-

Question Number 205353 by MATHEMATICSAM last updated on 17/Mar/24 $$\mathrm{If}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{had}\:\mathrm{two}\:\mathrm{roots}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{and}\:{p}^{\mathrm{2}} \:+\:{q}^{\mathrm{2}} \:=\:{p}^{\mathrm{3}} \:+\:{q}^{\mathrm{3}} \:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${b}^{\mathrm{3}} \:−\:\mathrm{2}{a}^{\mathrm{2}} {c}\:+\:{ab}^{\mathrm{2}} \:=\:\mathrm{3}{abc}. \\ $$ Answered…