Menu Close

Category: Algebra

Question-156806

Question Number 156806 by MathSh last updated on 15/Oct/21 Answered by mr W last updated on 16/Oct/21 $$\frac{{AB}}{{AC}}=\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{20}} \\ $$$$\frac{{BC}}{{AC}}=\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{20}} \\ $$$$\frac{{DC}}{{AC}}=\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{30}} \\ $$$$\frac{{AB}×{DC}}{{BC}×{AC}}=\frac{{AB}}{{AC}}×\frac{{AC}}{{BC}}×\frac{{DC}}{{AC}} \\…

prove-that-2-F-1-a-1-1-a-1-2-1-1-2-1-

Question Number 91258 by  M±th+et+s last updated on 28/Apr/20 $${prove}\:{that} \\ $$$$\:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\beta,\beta−{a}+\mathrm{1},−\mathrm{1}\right)=\frac{\Gamma\left(\beta−{a}+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\beta+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}−\alpha+\mathrm{1}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Q-25444-another-solution-z-1-iz-2-z-2-let-z-x-iy-x-iy-1-i-x-2-y-2-2xy-x-2-y-2-or-x-y-2-x-1-and-y-2-x-2-y-let-y-x-u-and-y-x-v-2u-2-v-u-2-i-

Question Number 25709 by ajfour last updated on 13/Dec/17 $${Q}.\:\mathrm{25444}\:\:\left({another}\:{solution}\right) \\ $$$$\:\:\bar {{z}}+\mathrm{1}\:={iz}^{\mathrm{2}} +\mid{z}\mid^{\mathrm{2}} \\ $$$${let}\:\:{z}={x}+{iy}\:,\:\Rightarrow \\ $$$${x}−{iy}+\mathrm{1}={i}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)−\mathrm{2}{xy}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${or}\:\:\left({x}−{y}\right)^{\mathrm{2}} ={x}+\mathrm{1}\:,{and}\: \\…

Question-156734

Question Number 156734 by MathSh last updated on 14/Oct/21 Commented by talminator2856791 last updated on 15/Oct/21 $$\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}?\:\: \\ $$$$\:\mathrm{shouldnt}\:\mathrm{the}\:\mathrm{denomenator}\:\mathrm{be} \\ $$$$\:{mn}\left({m}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({m}+\mathrm{2}\right)\left({n}+\mathrm{2}\right)\:\: \\ $$…

what-is-the-duble-fictorial-furmolla-

Question Number 91195 by student work last updated on 28/Apr/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{duble}\:\mathrm{fictorial}\:\mathrm{furmolla}? \\ $$ Answered by MJS last updated on 28/Apr/20 $${n}!!=\begin{cases}{\underset{{k}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}} {\prod}}\left(\mathrm{2}{k}\right)\:\mathrm{for}\:\mathrm{even}\:{n}}\\{\underset{{k}=\mathrm{1}} {\overset{\frac{{n}+\mathrm{1}}{\mathrm{2}}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\:\mathrm{for}\:\mathrm{uneven}\:{n}}\end{cases}…

Question-156729

Question Number 156729 by MathSh last updated on 14/Oct/21 Answered by MJS_new last updated on 15/Oct/21 $$\int\frac{{x}+\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}\right)\sqrt{{x}+\mathrm{1}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}+\mathrm{1}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}+\mathrm{1}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\int\frac{{dt}}{{t}^{\mathrm{2}}…

Question-91166

Question Number 91166 by student work last updated on 28/Apr/20 Commented by Prithwish Sen 1 last updated on 28/Apr/20 $$\mathrm{the}\:\mathrm{curves} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \:\mathrm{can}\:\mathrm{meet}\:\mathrm{at}\:\mathrm{atmost}\:\mathrm{two}\:\mathrm{points}\overset{} {.}…