Menu Close

Category: Algebra

let-n-1-and-2n-2-2n-1-solve-for-real-numbers-x-2-x-2-x-2-n-

Question Number 156575 by MathSh last updated on 12/Oct/21 $$\mathrm{let}\:\:\mathrm{n}\geqslant\mathrm{1}\:\:\mathrm{and}\:\:\lambda=\mathrm{2n}^{\mathrm{2}} -\mathrm{2n}+\mathrm{1} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt{\lambda\:+\:\mathrm{x}^{\mathrm{2}} }\:-\:\sqrt{\lambda\:-\:\mathrm{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}} \\ $$ Commented by MathSh last updated…

if-a-b-c-gt-0-and-1-a-b-1-b-c-1-c-a-4-then-1-a-1-b-1-c-9-a-b-c-16-

Question Number 156574 by MathSh last updated on 12/Oct/21 $$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{a}+\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{b}+\mathrm{c}}\:+\:\frac{\mathrm{1}}{\mathrm{c}+\mathrm{a}}\:=\:\mathrm{4}\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{c}}\:+\:\frac{\mathrm{9}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\geqslant\:\mathrm{16} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-25482

Question Number 25482 by math solver last updated on 11/Dec/17 Commented by prakash jain last updated on 11/Dec/17 $${x}=\frac{\sqrt{\mathrm{3}}\pm\sqrt{\mathrm{3}−\mathrm{4}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}\pm{i}}{\mathrm{2}} \\ $$$${x}=\frac{\sqrt{\mathrm{3}}+{i}}{\mathrm{2}},\:\omega=\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\Rightarrow{x}=−{i}\omega \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{24}} {\sum}}\left(−{iw}\right)^{{n}}…

Let-S-n-n-1-2-3-be-the-sum-of-infinite-geometric-series-whose-first-term-is-n-and-the-common-ratio-is-1-n-1-Then-lim-n-S-1-S-n-S-2-S-n-1-S-3-S-n-2-S-n-S-1-S-1

Question Number 25462 by Tinkutara last updated on 10/Dec/17 $$\mathrm{Let}\:{S}_{{n}} ,\:{n}\:=\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}…\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{infinite}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{whose}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{is}\:{n}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\frac{\mathrm{1}}{{n}\:+\:\mathrm{1}}.\:\mathrm{Then} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} {S}_{{n}} \:+\:{S}_{\mathrm{2}} {S}_{{n}−\mathrm{1}} \:+\:{S}_{\mathrm{3}} {S}_{{n}−\mathrm{2}}…

Question-156532

Question Number 156532 by MathSh last updated on 12/Oct/21 Answered by Rasheed.Sindhi last updated on 13/Oct/21 $$\:\:\:\:\:\mathrm{When}\:\mathrm{f}\left(\mathrm{x}\right),\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{are}\:\boldsymbol{\mathrm{constant}}\:\mathrm{or} \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{linear}}. \\ $$$$\begin{cases}{\mathrm{f}\left(\:\mathrm{x}+\mathrm{g}\left(\mathrm{x}\right)\:\right)=\mathrm{g}\left(\:\mathrm{x}+\mathrm{f}\left(\mathrm{x}\right)\:\right)}\\{\mathrm{f}\left(\mathrm{x}\right)+\mathrm{g}\left(\:\mathrm{f}\left(\mathrm{x}\right)\:\right)=\mathrm{g}\left(\mathrm{x}\right)+\mathrm{f}\left(\:\mathrm{g}\left(\mathrm{x}\right)\:\right)}\end{cases}\:\: \\ $$$$\mathrm{Assuming}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{are}\:\mathrm{both} \\ $$$$\mathrm{linear}:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b}\:\&\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{cx}+\mathrm{d}…

Question-156535

Question Number 156535 by MathSh last updated on 12/Oct/21 Answered by Rasheed.Sindhi last updated on 12/Oct/21 $$\mathrm{Let}\:\sqrt{\mathrm{x}}=\mathrm{a},\sqrt{\mathrm{y}}=\mathrm{b},\sqrt{\mathrm{z}}=\mathrm{c} \\ $$$$\mathrm{a}^{\mathrm{4}} \mathrm{bc}+\mathrm{b}^{\mathrm{4}} \mathrm{ac}+\mathrm{c}^{\mathrm{4}} \mathrm{ab}−\mathrm{3a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} =\mathrm{0}…