Menu Close

Category: Algebra

If-f-x-1-2x-2-Find-f-x-

Question Number 205273 by hardmath last updated on 14/Mar/24 $$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)=\mathrm{2x}+\mathrm{2} \\ $$$$\mathrm{Find}\:\:\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$ Answered by Rasheed.Sindhi last updated on 14/Mar/24 $${Replace}\:\mathrm{x}\:{by}\:\mathrm{x}+\mathrm{1} \\ $$$$\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{2}=\mathrm{2x}+\mathrm{4} \\…

Question-205211

Question Number 205211 by cortano12 last updated on 13/Mar/24 Answered by Berbere last updated on 13/Mar/24 $$\begin{cases}{\mathrm{5}{x}^{\mathrm{2}} \left({y}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{4}{x}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\\{\mathrm{5}{y}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{3}{y}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\end{cases}…

sinx-cosx-1-x-

Question Number 205218 by hardmath last updated on 13/Mar/24 $$\mid\:\mathrm{sinx}\mid\:+\:\mid\:\mathrm{cosx}\:\mid\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$ Answered by Sutrisno last updated on 13/Mar/24 $$ \\ $$$$\left(\mid\:\mathrm{sinx}\mid\:+\:\mid\:\mathrm{cosx}\:\mid\:\right)^{\mathrm{2}} =\:\mathrm{1}^{\mathrm{2}}…

4-sin-x-2-cos-x-2-1-x-

Question Number 205217 by hardmath last updated on 13/Mar/24 $$\mathrm{4}\:\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\:\centerdot\:\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$ Answered by A5T last updated on 13/Mar/24 $$\mathrm{2}{sinx}=\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\right)=\mathrm{4}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$\Rightarrow{sinx}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{x}=\mathrm{30}°+\mathrm{360}{n};\mathrm{150}°+\mathrm{360}{n} \\…

sinx-cosx-1-sinx-cosy-1-x-

Question Number 205219 by hardmath last updated on 13/Mar/24 $$\begin{cases}{\mathrm{sinx}\:+\:\mathrm{cosx}\:=\:\mathrm{1}}\\{\mathrm{sinx}\:−\:\mathrm{cosy}\:=\:\mathrm{1}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 13/Mar/24 $$\begin{cases}{\mathrm{sinx}\:+\:\mathrm{cosx}\:=\:\mathrm{1}…{i}}\\{\mathrm{sinx}\:−\:\mathrm{cosy}\:=\:\mathrm{1}…{ii}}\end{cases}\:\:\:;\mathrm{x}\:=\:? \\ $$$$\mathrm{cos}\:{x}+\mathrm{cos}\:{y}=\mathrm{0} \\…