Menu Close

Category: Algebra

If-0-lt-a-b-lt-pi-then-prove-that-sin-ab-sin-a-b-2-32a-2-b-2-ab-a-b-5-

Question Number 156448 by MathSh last updated on 11/Oct/21 $$\mathrm{If}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}<\pi\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{sin}\sqrt{\mathrm{ab}}}{\mathrm{sin}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right)}\:\geqslant\:\frac{\mathrm{32a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \sqrt{\mathrm{ab}}}{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{5}} } \\ $$ Answered by ghimisi last updated on 11/Oct/21 $${f}\left({t}\right)=\frac{{sint}}{{t}^{\mathrm{5}}…

Find-all-functions-f-Z-R-such-that-f-n-m-nf-n-mf-m-nm-n-m-n-m-Z-

Question Number 156447 by MathSh last updated on 11/Oct/21 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{functions}\:\:\mathrm{f}\::\:\mathbb{Z}\:\rightarrow\:\mathbb{R}\:\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{f}\left(\mathrm{n}+\mathrm{m}\right)=\mathrm{nf}\left(\mathrm{n}\right)+\mathrm{mf}\left(\mathrm{m}\right)+\mathrm{nm}-\mathrm{n}-\mathrm{m} \\ $$$$\forall\mathrm{n};\mathrm{m}\in\mathbb{Z} \\ $$ Answered by ghimisi last updated on 11/Oct/21 $${m}=\mathrm{1};{n}=\mathrm{0}\Rightarrow{f}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right)−\mathrm{1}\Rightarrow\mathrm{0}=−\mathrm{1} \\…

Question-156423

Question Number 156423 by cortano last updated on 11/Oct/21 Commented by john_santu last updated on 11/Oct/21 $${answer}\:=\:\frac{\mathrm{81}\left(\sqrt{\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{3}}−\mathrm{1}\right)}{\mathrm{2}}\:{sq}\:{units} \\ $$ Commented by cortano last updated on…

x-4-bx-2-cx-d-0-let-cx-m-px-2-x-4-2x-4-b-p-x-2-m-d-0-x-2-b-p-4-b-p-4-2-m-d-2-p-b-x-2-2cx-m-d-0-x-c-p-b-c-p-b-2-m-d-p-b-b-2-p-2-

Question Number 156404 by ajfour last updated on 10/Oct/21 $$\:\:\mathrm{x}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{cx}+\mathrm{d}=\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{cx}=\mathrm{m}+\mathrm{px}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \\ $$$$\Rightarrow\:\:\mathrm{2x}^{\mathrm{4}} +\left(\mathrm{b}+\mathrm{p}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{m}+\mathrm{d}=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} =−\left(\frac{\mathrm{b}+\mathrm{p}}{\mathrm{4}}\right)\pm\sqrt{\left(\frac{\mathrm{b}+\mathrm{p}}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{m}+\mathrm{d}}{\mathrm{2}}\right)} \\ $$$$\left(\mathrm{p}−\mathrm{b}\right)\mathrm{x}^{\mathrm{2}}…

Question-156400

Question Number 156400 by ajfour last updated on 10/Oct/21 Commented by ajfour last updated on 10/Oct/21 $$\mathrm{The}\:\mathrm{roots}\:\mathrm{of}\:\:\:\mathrm{f}\left(\mathrm{z}\right)=\left(\mathrm{z}−\mathrm{a}\right)^{\mathrm{2}} +\mathrm{b} \\ $$$$\mathrm{is}\:\mathrm{obtainable}\:\mathrm{by}\:\mathrm{the}\:\mathrm{welded} \\ $$$$\mathrm{parabola}\:\mathrm{wires}\:\left(\mathrm{with}\:\mathrm{mutually}\right. \\ $$$$\mathrm{perpendicular}\:\mathrm{planes};\:\:\mathrm{upper} \\…

solvd-for-x-2-3-x-2-3-x-4-

Question Number 25317 by ibraheem160 last updated on 08/Dec/17 $${solvd}\:{for}\:{x}:\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} +\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right)^{{x}} =\mathrm{4} \\ $$ Answered by ajfour last updated on 08/Dec/17 $${let}\:\:\:{u}=\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{ln}\:{u}={x}\mathrm{ln}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}} \\…