Menu Close

Category: Algebra

Question-25444

Question Number 25444 by math solver last updated on 10/Dec/17 Commented by Rasheed.Sindhi last updated on 16/Dec/17 $$\bar {\mathrm{z}}+\mathrm{1}=\mathrm{iz}^{\mathrm{2}} +\mid\mathrm{z}\mid^{\mathrm{2}} \\ $$$$\mathrm{z}=\mathrm{x}+\mathrm{iy}\Rightarrow\overline {\mathrm{x}+\mathrm{iy}}+\mathrm{1}=\mathrm{i}\left(\mathrm{x}+\mathrm{iy}\right)^{\mathrm{2}} +\mid\mathrm{x}+\mathrm{iy}\mid \\…

2021-n-0-k-0-1-m-1-2022-n-k-m-1-A-Find-the-value-of-A-

Question Number 156485 by MathSh last updated on 11/Oct/21 $$\mathrm{2021}!\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\mathrm{2022}} {\prod}}\left(\mathrm{n}\:+\:\mathrm{k}\:+\:\mathrm{m}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{A}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\boldsymbol{\mathrm{A}} \\ $$ Terms of Service Privacy Policy…

Solve-for-real-numbers-3-sin-2x-4sin-x-pi-4-

Question Number 156482 by MathSh last updated on 11/Oct/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{3}\:+\:\mathrm{sin}\left(\mathrm{2x}\right)\:=\:\mathrm{4sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{4}}\right) \\ $$ Answered by mr W last updated on 11/Oct/21 $$\mathrm{3}+\mathrm{sin}\:\left(\mathrm{2}{x}\right)=\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right) \\ $$$$\mathrm{9}+\mathrm{6sin}\:\left(\mathrm{2}{x}\right)+\mathrm{sin}^{\mathrm{2}}…

Question-156473

Question Number 156473 by DysAndroid last updated on 11/Oct/21 Answered by Rasheed.Sindhi last updated on 11/Oct/21 $$\frac{{x}−\mathrm{6}}{\mathrm{2}}+\frac{{x}−\mathrm{7}}{\mathrm{2}}=\frac{\mathrm{2}{x}+\mathrm{7}}{\mathrm{2}} \\ $$$$\mathrm{2}{x}−\mathrm{13}=\mathrm{2}{x}+\mathrm{7} \\ $$$$\:\:\:\:−\mathrm{13}=\mathrm{7} \\ $$$${No}\:{solution} \\ $$…

if-x-y-z-0-and-4xyz-4xy-2yz-3zx-6-prove-that-2x-3y-4z-4-xy-yz-zx-

Question Number 156467 by MathSh last updated on 11/Oct/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{4xyz}+\mathrm{4xy}+\mathrm{2yz}+\mathrm{3zx}=\mathrm{6} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{2x}+\mathrm{3y}+\mathrm{4z}\:\geqslant\:\mathrm{4}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com